The Congruent Number Problem

Holly Green

University of Bristol

January 24th, 2024

The Congruent Number Problem

Which integers are the area of a right-angled triangle with sides of rational length?

Let $n \in \mathbb{N}$ be square-free, $E_n : y^2 = x^3 - n^2 x$.

$$(a, b, c) \in \mathbb{Q}^3 \mid a^2 + b^2 = c^2, \ \frac{1}{2}ab = n \} \stackrel{1\text{-to-1}}{\longleftrightarrow} \{(x, y) \in E_n(\mathbb{Q}) \mid y \neq 0\}$$
$$(a, b, c) \quad \longmapsto \quad (nb/(c-a), 2n^2/(c-a))$$
$$((x^2 - n^2)/y, 2nx/y, (x^2 + n^2)/y) \quad \longleftrightarrow \quad (x, y)$$

 $n \text{ is a congruent number } \Longleftrightarrow \exists (x,y) \in E_n(\mathbb{Q}), \ y \neq 0 \iff \mathsf{rank}(E_n) \geq 1 \stackrel{\mathsf{BSD}}{\Longleftrightarrow} L(E_n,1) = 0.$

LMFDB	$\label{eq:liptic curve} \begin{array}{l} \Delta \rightarrow Elliptic curve \Rightarrow Q \rightarrow 800 \rightarrow d \rightarrow 3 \\ \hline \\ \textbf{Elliptic curve with LMFDB label 800.d3 (Cre} \end{array}$	mona label 800a1)	Citation · Feedback	< · Hide Menu
Introduction	Minimal Weierstrass equation	Show commands: Magma / Oscar / PariGP / SageMath 💿	Properties	
Overview Random Universe Knowledge	$y^2 = x^3 - 25x$ (homogenize, simplify)		Label	800.d3
L-functions	Mordell-Weil group structure		13 20	
Rational All	$\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$			
Modular forms	Infinite order Mordell-Weil generator and height		-13	
Classical Maass Hilbert Bianchi	P = (-4, 6) $\hat{h}(P) \approx 1.8994821725317955901072055096$		Conductor	800
Varieties Elliptic curves over Q	Torsion generators		Discriminant j-invariant CM	1000000 1728 yes (D = -4)
Elliptic curves over $\mathbb{Q}(\alpha)$ Genus 2 curves over \mathbb{Q}	(0,0), (5,0)		Rank Torsion structure	$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$
Higher genus families	Integral points		Related objects	
Abelian varieties over \mathbb{F}_q Fields	$(-5,0), (-4,\pm 6), (0,0), (5,0), (45,\pm 300)$		Isogeny class 800.d Minimal guadratic tw	

The Congruent Number Problem and the Parity Conjecture

The Parity Conjecture

Let E/\mathbb{Q} be an elliptic curve. Then

$$(-1)^{\mathsf{rank}(E)} = w(E).$$

When $E_n : y^2 = x^3 - n^2 x$,

$$w(E_n) = \begin{cases} +1 & n \equiv 1, 2 \text{ or } 3 \pmod{8}, \\ -1 & n \equiv 5, 6 \text{ or } 7 \pmod{8}. \end{cases}$$

Corollary

Assuming the Parity Conjecture, n is a congruent number whenever $n \equiv 5, 6$ or 7 (mod 8).

Unconditional results:

primes
$$p \equiv 5, 7 \pmod{8}$$
 are congruent numbers,(Heegner)primes $p \equiv 3 \pmod{8}$ are not congruent numbers,(Nagell) $\geq 55.9\%$ of square-free $n \equiv 5, 6$ or 7 (mod 8) are congruent numbers.(Smith)

Thank you for listening!

Question

Is 52 a congruent number?