
Study Group Talk: Flatness

Holly Green

Today I’m going to speak about what it means to be flat, in particular how this adjective
transfers from the world algebra to the world of geometry. A motivating picture is the
following: the first example looks like the ‘nicer’ of the two and is in fact flat – we’ll discuss
how flatness can be detected by looking at the fibres.

1 Algebra

Let R be a commutative rings with unity and let M be an R-module.

Most traditionally, flatness is defined as follows:

Definition 1.1. M is called flat over R if whenever the sequence of R-modules

0→ A→ B → C → 0

is short exact, then the sequence of R-modules obtained by right tensoring with M

0→ A⊗R M → B ⊗R M → C ⊗R M → 0

is also short exact.

More precisely, as this part is automatically exact, the definition imposes that for M to
be flat, tensoring by it must preserve injections.

Given another (commutative) ring S (with unity) and a map f : R → S, we can endow
S with the structure of an R-module, i.e. equipping it with the operation

R× S → S, (r, s) 7→ f(r)s.

This idea allows us to further define flatness of a ring map:

Definition 1.2. A map of rings f : R→ S is called flat if S is flat over R.

Flatness is a particularly nice condition when the ring R is a PID.

Recall,

Definition 1.3. We say m ∈ M is a torsion element if rm = 0 for some non zero-divisor
r ∈ R. Moreover, we say that M is torsion-free if the only torsion element is 0.
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Proposition 1.4. If R is a PID then M is flat if and only if it is torsion free.

Sketch proof of ‘only if ’: Let M be a flat R module and pick 0 6= a ∈ R. The map

R→ R, r 7→ ar

is an injection, so the induced map

R⊗R M → R⊗R M

is too. The latter map is in fact

M →M, m 7→ am

and this being injective for every a is exactly the statement that M is torsion free.

Remark. Notice, this direction of the proposition doesn’t use the fact that R is a PID, but
this is essential for the proof of the converse statement.

This proposition gives a straight forward way to identify flat modules over fields or Z for
example.

Example 1.5. Q is a flat Z-module (abelian group), as for 0 6= n ∈ Z, na
b

= 0⇔ a
b

= 0.

Example 1.6. Q∗ is not a flat Z-module (abelian group) as (−1)2 = 1, i.e. −1 is a nonzero
torsion element.

Scenarios that are possibly of more interest to us include the following:

Example 1.7. Consider C[x, y]/(xy) as a C[x]-module, i.e. equip it with the operation

(f(x), g(x, y) + (xy)) 7→ f(x)g(x, y) + (xy).

This module is not torsion-free, y+ (xy) is a nonzero torsion element, and therefore not flat.

Example 1.8. As above, consider C[x, y, t]/(y2 − x3 + t) as a C[t]-module.

Suppose that g(x, y, t) + (y2 − x3 + t) ∈ C[x, y, t]/(y2 − x3 + t) is a torsion element,
i.e. there’s some f(t) ∈ C[t] such that f(t)g(x, y, t) ∈ (y2 − x3 + t). Assuming that f(t) is
non-constant (if it were, we automatically obtain that g(x, y, t) is zero), we can factor it and
write

(y2 − x3 + t)q(x, y, t) =
n∏

i=1

(λit− µi)g(x, y, t).

Clearly, y2 − x3 + t is not divisible by λit− µi for any index i, so f(t) divides q(x, y, t) and
g(x, y, t) + (y2 − x3 + t) is zero.

This module is therefore torsion-free and flat.
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Example 1.9. Similarly, consider C[x, y, t]/(t2y2 − t2x3 + t) as a C[t]-module. This is not
flat, ty2 − tx3 + 1 + (t2y2 − t2x3 + t) is a nonzero torsion element.

Moreover,

Lemma 1.10. Any C[t]-module of the form C[x1, . . . , xn, t]/(a(x1, . . . , xn, t)) is flat if and
only if there’s no non-constant b(t) ∈ C[t] dividing a(x1, . . . , xn, t).

The proof of this is just an adaptation of our arguments above.

Returning to R in general, we still have different formulations of flatness.

Proposition 1.11 (Flatness is a local property). M is flat over R if and only if for each
prime ideal p ⊆ R, Mp is flat over Rp.

Remark. Local property comes from this being characterised by the localizations Mp, i.e.{
x

y
|x ∈M, y ∈ R\p

}
/ ∼,

where x1

y1
∼ x2

y2
if and only if there’s some u ∈ R\p such that u(x1y2 − x2y1) = 0.

2 Geometry

Recall, affine schemes look like the spectrum of some ring R, i.e a topological space with
underlying set

SpecR = {prime ideals p ⊆ R}
(whose closed sets are given by V (I) = {p ∈ Spec R : I ⊆ p} for each ideal I ⊆ R) equipped
with a ‘structure sheaf’ OSpecR.

A morphism between the affine schemes SpecR and SpecS is a pair (f, f#) where

f : SpecR→ SpecS

is a continuous map of topological spaces and

f# : OSpecS → OSpecR

is a sheaf morphism such that every induced map of stalks (= localizations for affine schemes),
i.e. for each p ∈ SpecR, f#

p : Sf(p) → Rp is a local ring homomorphism.

Definition 2.1. A morphism (f, f#) of the affine schemes SpecR and SpecS is called flat
if f#

p is a flat ring map for each p ∈ SpecR.

This definition isn’t very enlightening. Luckily, Proposition 1.11 allows us to show that
the two notions we have of flatness are consistent and we’ll instead take this as our definition.

Proposition 2.2. The map of rings R → S is flat, i.e. S is flat over R, if and only if the
corresponding map of affine schemes SpecS → SpecR is flat.

3



Recycling some of our earlier examples:

Example 2.3. The map of schemes SpecC[x, y]/(xy)→ SpecC[x] is not flat.

Example 2.4. The map of schemes SpecC[x, y, t]/(y2 − x3 + t)→ SpecC[t] is flat.

Example 2.5. The map of schemes SpecC[x, y, t]/(t2y2 − t2x3 + t)→ SpecC[t] is not flat.

Identifying SpecC[x1, . . . , xn, t]/(a(x1, . . . , xn, t)) with the variety a(x1, . . . , xn, t) = 0 and
SpecC[t] with C, these maps and their fibres are the following

{xy = 0} → C, (x, y) 7→ y;

{y2 = x3 − t} → C, (x, y, t) 7→ t;

{t2y2 = t2x3 − t} → C, (x, y, t) 7→ t;

Recognise the second and third images here as those which I referred to at the beginning
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of this talk. We distinguish these from the first, as their sources are defined by smooth
varieties (check the rank of the Jacobian matrix).

Observations we can make are that there are some consistencies amongst the fibres. In
the second case, each fibre is an elliptic curve, nonsingular for t 6= 0 and most notably, each
has dimension 1. In the third case, all fibres are elliptic curves with t = 0 being an exception,
it is an entire plane, so all fibres have dimension 1 or 2.

This is no coincidence, ‘Miracle Flatness’ allows us to detect flatness from the dimension
of the fibres.

Theorem 2.6 (Miracle flatness). Let X → Y be a morphism between smooth, irreducible
(i.e. connected) varieties. This morphism is flat if and only if each fibre, if it exists, has
dimension dimX − dimY .

Here we take a variety to be the zero locus of some ideal I ⊆ k[x1, x2, · · · , xn], for k a
field.

Remark. We define dimX to be the maximal length, d, of the chains

X0 ⊂ X1 ⊂ . . . ⊂ Xd

of distinct nonempty (irreducible) subvarieties of X.

In fact the smoothness assumption can be dropped in the ‘only if’ direction.

Example 2.7. By our earlier lemma, C[x, y, t]/(y2− tx3) is a flat C[t]-module and so is the
corresponding map

{y2 = tx3} → C, (x, y, t) 7→ t.

Again we see that the fibres all have dimension 1, but the defining variety is singular
along x = y = 0.

Smoothness is however essential in the ‘if’ direction.

Example 2.8. Consider the map SpecC[t]→ SpecC[x, y]/(y2 − x3) defined by

C→ {y2 = x3}, t 7→ (t2, t3).

First, notice that the curve y2 = x3 is singular at (0, 0).
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Second, notice that this map is a bijection. So every fibre is a single point, i.e has
dimension zero.

Finally, I claim that this map is not flat. To show this, on the level of rings, we want
that C[x, y]/(y2 − x3) is not flat over C[t]. This is not easy to spot using the tools we’ve
developed so far. Instead we use the following:

Proposition 2.9. Let R be an integral domain and R̃ its integral closure. If R̃ is flat over
R then R is integrally closed, i.e. R = R̃.

In the notation of the proposition, take R = C[x, y]/(y2 − x3) ∼= C[t2, t3], so it’s field of
fractions is K = C(t). R is not integrally closed in K since t ∈ K has minimal polynomial
x2 − t2 ∈ R[x], but t /∈ R.

In fact, the integral closure of R is R̃ = C[t]. We can therefore apply the contrapositive
of the theorem to obtain that C[x, y]/(y2 − x3) is not flat over C[t].

Miracle flatness motivates why flat maps of smooth varieties are particularly ‘nice’. Not
only do the fibres of a flat map have the same dimension, other properties are preserved too:
for example, degree (you can’t have one fibre a conic and another a cubic) and arithmetic
genus.
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