Introduction to root numbers and the parity conjecture

Holly Green

University College London

November 15th, 2022

Overview and notation

- Motivation
- What are root numbers?
- Parity phenomena

Notation

- E is an elliptic curve
- K is a number field
- \blacksquare \mathcal{K} is a local field, e.g. \mathbb{C} , \mathbb{R} , \mathbb{Q}_p or K_v (v a place of K)

Motivation

Let E/K be an elliptic curve over a number field.

Birch and Swinnerton-Dyer conjecture

Assuming that L(E, s) has an analytic continuation to \mathbb{C} ,

$$\mathsf{rank}(E) = \mathsf{ord}_{s=1} L(E, s).$$

Conjectural functional equation

Assuming that L(E, s) has an analytic continuation to \mathbb{C} ,

$$L(E,s) = w(E)L(E,2-s) \times (stuff), \qquad w(E) \in \{\pm 1\}.$$

The sign in the functional equation is conjectured to be the global root number.

Definition (Global root number)

$$w(E/K) = \prod_{v \text{ place of } K} w(E/K_v).$$

Local root numbers

Let \mathcal{K} be a local field (i.e. \mathbb{C} , \mathbb{R} , \mathbb{Q}_p).

For characters (David)

Let χ be a 1-dimensional continuous ℓ -adic representation over \mathcal{K} . The local root number $w(\chi, \psi, dx)$ (w.r.t. ψ and dx) is defined in terms of ϵ -factors:

$$\epsilon(\chi, \psi, dx) = \frac{\chi(\pi_{\mathcal{K}}^{n(\psi)})}{||\pi_{\mathcal{K}}^{n(\psi)}||} \int_{\mathcal{O}_{\mathcal{K}}} dx \quad \text{and} \quad w(\chi, \psi, dx) = \frac{\epsilon(\chi, \psi, dx)}{|\epsilon(\chi, \psi, dx)|}.$$

For representations (Jamie)

Let ρ be a finite dimensional representation continuous ℓ -adic representation over \mathcal{K} . Extend the definition of ϵ -factors so that various properties are satisfied (multiplicativity, inductivity, ...), then define $w(\rho, \psi, dx)$ as above.

To define the root number of an elliptic curve E/\mathcal{K} , need to associate to it a representation.

Local root numbers for abelian varieties

Let E/\mathcal{K} then $E[\ell^n] \cong (\mathbb{Z}/\ell^n\mathbb{Z})^2$. Write $E[\ell] = \langle P_1, Q_1 \rangle$. For $n \geq 2$, find $\langle P_n, Q_n \rangle = E[\ell^n]$ with

$$\ell P_n = P_{n-1}, \qquad \ell Q_n = Q_{n-1}.$$

For
$$g \in G_K$$
, $g(P_n) = (a_1 + ... + a_n \ell^{n-1}) P_n + (b_1 + ... + b_n \ell^{n-1}) Q_n$ and $g(Q_n) = ...$

Then $\rho_{E/\mathcal{K}}: G_{\mathcal{K}} \to \mathsf{GL}_2(\mathbb{Q}_\ell)$ is the ℓ -adic representation of E/\mathcal{K} .

For general A/\mathcal{K} , $A[\ell^n] \cong (\mathbb{Z}/\ell^n\mathbb{Z})^{2\dim A}$. Similarly we get $\rho_{A/\mathcal{K}}: G_{\mathcal{K}} \to \mathsf{GL}_{2\dim A}(\mathbb{Q}_{\ell})$.

■ Last week: Yuan told us that $\rho_{E/\mathcal{K}}$ is independent of ℓ

$$w(E/\mathcal{K}) := w(\rho_{E/\mathcal{K}}^*, \psi, dx)$$

- w(E/K) is independent of ψ and dx
- $w(E/\mathcal{K}) \in \{\pm 1\}$
- w(E/K) = -1 when K is Archimedean, (more generally $w(A/K) = (-1)^{\dim A}$).

Holly Green (UCL) Study Group November 15th, 2022

Computing root numbers

Recall that the global root number is $w(E/K) = \prod_{\nu} w(E/K_{\nu})$.

Elliptic curves (Sven)

Let E/K be a semistable elliptic curve over a number field. It turns out that,

$$w(E/K) = (-1)^{m_K + u_K}$$

- $\mathbf{m}_K = \#\{\text{primes where } E \text{ has split multiplicative reduction}\},$
- $u_K = \#\{\text{infinite places}\}.$

When E/K is not semistable, we have Rohrlich's theorem.

Abelian varieties (Lilybelle)

- Formulae for twisted root numbers
- Analogue of Rohrlich's theorem for tame abelian varieties
- Cluster picture machinery for tame hyperelliptic curves

The parity conjecture

Let E/K be an elliptic curve over a number field.

Birch and Swinnerton-Dyer conjecture

Assuming that L(E, s) has an analytic continuation to \mathbb{C} ,

$$\mathsf{rank}(E) = \mathsf{ord}_{s=1} L(E, s).$$

Conjectural functional equation

Assuming that L(E, s) has an analytic continuation to \mathbb{C} ,

$$L(E,s) = w(E/K)L(E,2-s) \times (stuff), \qquad w(E/K) \in \{\pm 1\}.$$

Rephrased: $(-1)^{\operatorname{ord}_{s=1}L(E,s)} = w(E/K)$.

The Parity Conjecture

$$(-1)^{\mathsf{rank}(E/K)} = w(E/K) = \prod_{v \; \mathsf{place} \; \mathsf{of} \; K} w(E/K_v).$$

Parity Phenomena

- Predicting the existence of points of infinite order
- Rational abelian varieties have even rank over $\mathbb{Q}(i, \sqrt{17})$
- An elliptic curve with infinitely many $\mathbb{Q}(\sqrt[3]{n})$ points
- An elliptic curve whose rank grows in all even degree extensions
- Goldfeld's conjecture cannot hold when $K \neq \mathbb{Q}$
- ... (see Lilybelle and Vladimir's paper!)

Predicting the existence of points of infinite order

The Parity Conjecture

$$(-1)^{\operatorname{rank}(A/K)} = w(A/K) = \prod_{v \text{ place of } K} w(A/K_v).$$

Consequently, if w(A/K) = -1 then $rank(A/K) \ge 1!$

If E/K is semistable then

$$w(E/K)=(-1)^{m_K+u_K},$$

where $m_K = \#\{\text{primes where } E \text{ has split multiplicative reduction}\}$, $u_K = \#\{\text{infinite places}\}$.

Let $E/\mathbb{Q}: y^2-23y=x^3-99997x^2-17x+42$, $\Delta_E=17\cdot 655943686625481101$. Then $m_\mathbb{Q}=0$ and $u_\mathbb{Q}=1$. The parity conjecture says

$$(-1)^{\mathsf{rank}(E/\mathbb{Q})} = w(E/\mathbb{Q}) = (-1)^1 = -1.$$

Therefore E has a \mathbb{Q} -point of infinite order. Magma can't compute this!

Rational abelian varieties have even rank over $\mathbb{Q}(i, \sqrt{17})$

Let A/\mathbb{Q} be an abelian variety and $K = \mathbb{Q}(i, \sqrt{17})$.

Fact

Each $p \in \mathbb{Z}$ splits into an even number, n_p , of primes in \mathcal{O}_K .

E.g. 2 splits in $\mathbb{Q}(\sqrt{17})$ and ramifies in $\mathbb{Q}(i)$ & $\mathbb{Q}(\sqrt{-17})$. In \mathcal{O}_K we have $2 = \mathfrak{p}_1^2 \mathfrak{p}_2^2$.

Fact

If $\mathfrak{p}_1,\mathfrak{p}_2|p\in\mathbb{Z}$, then $w(A/K_{\mathfrak{p}_1})=w(A/K_{\mathfrak{p}_2})$.

The parity conjecture says

$$(-1)^{\mathsf{rank}(A/K)} = \prod_{\mathsf{v}} w(A/K_{\mathsf{v}}) = w(A/\mathbb{C})^2 \cdot \prod_{\mathsf{p} \in \mathbb{Z}} \left(\prod_{\mathfrak{p} \mid \mathsf{p}} w(A/K_{\mathfrak{p}}) \right) = \prod_{\substack{\mathsf{p} \in \mathbb{Z} \\ \mathsf{fix} \mid \mathsf{p} \mid \mathsf{p}}} w(A/K_{\mathfrak{p}})^{n_{\mathsf{p}}} = +1.$$

Therefore rank(A/K) is even for any abelian variety A/\mathbb{Q} .

An elliptic curve with infinitely many $\mathbb{Q}(\sqrt[3]{n})$ points

Let $E: y^2+y=x^3+x^2+x$, $\Delta_E=19$. E/\mathbb{Q} has split multiplicative reduction at 19, so

$$(-1)^{\mathsf{rank}(E/\mathbb{Q})} = w(E/\mathbb{Q}) = (-1)^{1+1} = +1.$$

In fact rank $(E/\mathbb{Q}) = 0$. What about $E/\mathbb{Q}(\sqrt[3]{n})$?

- If $19 \nmid n$, then look at $x^3 n$. If \bar{n} is a cube in \mathbb{F}_{19} then $19 = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3$, else $19 = \mathfrak{p}$.
- If $n = 19^{\alpha}c$. Write $\sqrt[3]{n} = \prod_{i=1}^{k} \mathfrak{p}_i^{n_i} \Longrightarrow 19^{\alpha} = \prod_{i=1}^{k_0} \mathfrak{p}_i^{3n_i} \Longrightarrow 19 = \mathfrak{p}_1^3$.

Fact

If E has split multiplicative reduction at p then it has split multiplicative reduction at $\mathfrak{p}|p$.

Therefore, $m_{\mathbb{O}(\sqrt[3]{n})}$ is odd and $u_{\mathbb{O}(\sqrt[3]{n})} = 2$, so

$$(-1)^{\operatorname{rank}(E/\mathbb{Q}(\sqrt[3]{n}))} = w(E/\mathbb{Q}(\sqrt[3]{n})) = -1.$$

E has infinitely many $\mathbb{Q}(\sqrt[3]{n})$ -rational points!

An elliptic curve whose rank grows across even degree extensions

Let
$$K=\mathbb{Q}(\sqrt{-643})$$
, $\lambda=\frac{1}{2}(1+\sqrt{-643})$ and

$$E/K : y^2 + xy + (\lambda + 1)y = x^3 + \lambda x^2 + (-\lambda - 60)x - 8\lambda + 78.$$

E/K has everywhere good reduction so $m_K = 0$ and $u_K = 1$. Therefore

$$w(E/K) = -1 \Rightarrow \operatorname{rank}(E/K)$$
 is odd.

Now let L/K be an even degree extension, $m_L = 0$ and u_L is even. Therefore

$$w(E/L) = +1 \Rightarrow rank(E/L)$$
 is even.

Goldfeld's conjecture

Let $E: y^2 + y = x^3 - x^2$, $\Delta_E = -11$. E/\mathbb{Q} has split mult. reduction at $11 \Rightarrow w(E/\mathbb{Q}) = +1$.

Fact

Let $d \in K^{\times}/(K^{\times})^2$. Then $w(E_d/K) = w(E/K)w(E/K(\sqrt{d}))$.

 $w(E_d/\mathbb{Q}) = w(E/\mathbb{Q}(\sqrt{d}))$ are equally distributed.

Goldfeld's conjecture

$$\operatorname{\mathsf{rank}}(E_d/\mathbb{Q}) = egin{cases} 0 & ext{for 50\% of } d \in \mathbb{Q}^{ imes} mod \square \ 1 & ext{for 50\% of } d \in \mathbb{Q}^{ imes} mod \square \end{cases}$$

Now let
$$K = \mathbb{Q}(\sqrt{-643})$$
, $\lambda = \frac{1}{2}(1 + \sqrt{-643})$.

$$E/K : y^2 + xy + (\lambda + 1)y = x^3 + \lambda x^2 + (-\lambda - 60)x - 8\lambda + 78$$

has good reduction so w(E/K) = -1 and $w(E/K(\sqrt{d})) = +1 \Rightarrow w(E_d/K) = -1$.

An analogue of Goldfeld's conjecture can't be true when $K \neq \mathbb{Q}!$

Thank you for your attention!