The ring of integers of a function field and its primes

Holly Green

University College London

November 5th, 2021

Goal and motivation

Let $q = p^r$. A function field is

- lacksquare a finitely generated field K/\mathbb{F}_q of transcendence degree 1
- $\mathbb{F}_q(C)$ for a smooth projective curve C/\mathbb{F}_q : in particular if C:F(x,y)=0 this is the fraction field of

$$\mathbb{F}_q[x,y]/(F(x,y)).$$

E.g.
$$C: y^2 = x^3 - x$$
 over $\mathbb{F}_5 \Rightarrow \mathbb{F}_5(C) = \mathbb{F}_5(x, \sqrt{x^3 - x})$
 $C: \{y^2 = x^3 - x, \ w^2 = 2\}$ over $\mathbb{F}_5 \Rightarrow \mathbb{F}_5(C) = \mathbb{F}_{25}(x, \sqrt{x^3 - x})$

Goal

What is the ring of integers of K, \mathcal{O}_K ? What are the primes in \mathcal{O}_K ?

Valuations on $\mathbb{F}_q(x)$

$$\mathbb{Q} \quad \longleftrightarrow \quad \mathbb{Z} = \bigcap_{\text{ρ prime}} \{x \in \mathbb{Q} : |x|_{\text{ρ}} \leq 1\}$$

$$\mathbb{F}_q(x) = \mathbb{F}_q(\mathbb{P}^1) \quad \longleftrightarrow \quad \mathbb{F}_q[x]$$

Question

Is $\mathbb{F}_q[x]$ cut out by valuation bounds in the same way as \mathbb{Z} ?

Let $f \in \mathbb{F}_q(x)$ be a rational function on \mathbb{P}^1 . Fix $P \in \mathbb{P}^1(\mathbb{F}_{q^n})$ for some $n \geq 1$, define

 $ord_P(f) := the order of vanishing of f at P.$

Definition

The absolute value of f at P is $|f|_P = (q^n)^{-\operatorname{ord}_P(f)}$.

Absolute values on $\mathbb{F}_q(x)$

Let $f \in \mathbb{F}_q(x) = \mathbb{F}_q(\mathbb{P}^1)$ and fix $P \in \mathbb{P}^1(\mathbb{F}_{q^n})$ for some $n \ge 1$.

Definition

The absolute value of f at P is $|f|_P = (q^n)^{-\operatorname{ord}_P(f)}$.

For example, if $f = x/(x^2 - 2)$ and q = 5 then

$$|f|_0 = 5^{-1}, \qquad |f|_{\pm\sqrt{2}} = 25^1, \qquad |f|_{\infty} = 5^{-1},$$

and $|f|_P = 1$ for all other P.

Remarks

- This is a non-archimedean
- Varying P gives all absolute values on $\mathbb{F}_q(x)$
- $|f|_P \le 1$ precisely when f does not have a pole at P
- $\{f \in \mathbb{F}_q(x) : |f|_P \le 1\}$ is a discrete valuation ring

The analogue of $\mathbb{Z} \hookrightarrow \mathbb{Q}$ for $\mathbb{F}_q(\mathbb{P}^1)$

Mirroring the case of number fields:

$$\bigcap_{P\in\mathbb{P}^1(\overline{\mathbb{F}}_q)}\{f\in\mathbb{F}_q(x):|f|_P\leq 1\}=\{f\in\mathbb{F}_q(x):f\text{ has no poles}\}$$

but all we've constructed is $\mathbb{F}_q \hookrightarrow \mathbb{F}_q(x)$. To get a more exciting ring, we repeat but excluding a point P_0 .

- $P_0 = \infty$, we get $\{f \in \mathbb{F}_q(x) : f \text{ has no poles except possibly at } \infty\}$. If $f = f_1/f_2$ then f_2 must be constant so this subring is $\mathbb{F}_q[x]$.
- $P_0 = \sqrt{\alpha}$ for $\square \neq \alpha \in \mathbb{F}_q$, we get $\{f \in \mathbb{F}_q(x) : f \text{ has no poles except possibly at } \sqrt{\alpha}\}$. If $f = f_1/f_2$ then we need $f_2 = c(x^2 \alpha)^i$, but this also has a zero at $-\sqrt{\alpha}$! Instead we look at the subring $\{f \text{ has no poles except possibly at } \pm \sqrt{\alpha}\} = \mathbb{F}_q[1/(x^2 \alpha), x/(x^2 \alpha)]$.

Definition

A closed point on C/\mathbb{F}_q is a Galois orbit of points in $C(\overline{\mathbb{F}}_q)$.

The ring of integers of $\mathbb{F}_q(\mathcal{C})$

Definition

Let $K = \mathbb{F}_q(C)$ and fix a finite set S of closed points on C. The *ring of integers of* K *with respect to* S is

$$\mathcal{O}_{K,S} = \{ f \in K : f \text{ has no poles outside of } S \}.$$

Suppose
$$C: y^2 = x^3 - x$$
, $p \neq 2$. Then $\mathbb{F}_q[x, y]/(y^2 - x^3 + x) = \{a(x) + yb(x) : a, b \in \mathbb{F}_q[x]\}$.

■ Letting $S = \{\infty\}$

$$\mathcal{O}_{K,S} = \{ f \in K : f \text{ has no poles except possibly at } \infty \} = \mathbb{F}_q[x,y]/(y^2 - x^3 + x).$$

- Letting $S = \{(0,0)\}$, we change variables: s = 1/x, $t = y/x^2$ so that $C : t^2 = s s^3$. $\mathcal{O}_{K,S} = \{f \in K : f \text{ has no poles except possibly at } (x,y) = (0,0)\} = \mathbb{F}_a[s,t]/(t^2-s+s^3)$.
- Letting $S = \{(-1,0), (0,0), (1,0), \infty\}$

$$\mathcal{O}_{K,S} = \{ f \in K : f \text{ has no poles except possibly at } (-1,0), (0,0), (1,0) \text{ or } \infty \}$$
$$= \mathbb{F}_q[x,y,1/y]/(y^2 - x^3 + x).$$

Properties of $\mathcal{O}_{K,S}$

More generally, for smooth C: F(x,y) = 0 over \mathbb{F}_q , taking $S = \{\text{points at } \infty\}$ gives

$$\mathcal{O}_{K,S} = \{ f \in K : f \text{ has no poles at affine points on } C \} = \mathbb{F}_q[x,y]/(F(x,y)).$$

A non-constant morphism $\phi: C \to \mathbb{P}^1$ induces an inclusion $\mathbb{F}_q[x] \hookrightarrow \mathbb{F}_q(C)$. Letting $S = \phi^{-1}(\infty)$, it can be shown that

 $\mathcal{O}_{K,S}$ is the integral closure of $\mathbb{F}_q[x]$ in K.

The field of fractions of $\mathcal{O}_{K,S}$ is K

 $\mathcal{O}_{K,S}$ is a Dedekind domain, i.e.

- it's integrally closed in K: discrete valuation rings are integrally closed
- it's Noetherian
- every non-zero prime ideal is maximal: we'll see this soon

This structure allows us to factorize the ideals of $\mathcal{O}_{K,S}$ uniquely into primes.

The primes of $\mathcal{O}_{K,S}$

Recall that for $K = \mathbb{F}_q(C)$ and S a finite set of closed points

$$\mathcal{O}_{\mathcal{K},\mathcal{S}} = \{f \in \mathcal{K} : f \text{ has no poles outside of } \mathcal{S}\} = \bigcap_{\text{closed } P \notin \mathcal{S}} \{f \in \mathcal{K} : |f|_P \leq 1\}.$$

The unique maximal ideal of $\{f \in K : |f|_P \le 1\}$ is

$$\{f \in K : |f|_P < 1\} = \{f \in K : f \text{ has a zero at } P\}.$$

From this we can construct a prime ideal of $\mathcal{O}_{K,S}$.

Definition

For a closed point $P \notin S$, the prime ideal of $\mathcal{O}_{K,S}$ at P is

$$\mathfrak{p}_{P,S}:=\{f\in\mathcal{O}_{K,S}:|f|_P<1\}=\{f\in K:f\text{ has a zero at }P\text{ and no poles outside of }S\}.$$

Sanity check: $p_{P,S}$ is prime as it's the kernel of the homomorphism

$$\mathcal{O}_{K,S} \ni f \mapsto f(P) \in \overline{\mathbb{F}}_q$$
.

The primes of $\mathcal{O}_{K,S}$

Definition

For a closed point $P \notin S$, the prime ideal of $\mathcal{O}_{K,S}$ at P is

 $\mathfrak{p}_{P,S} = \{ f \in K : f \text{ has a zero at } P \text{ and no poles outside of } S \}.$

Proposition

Every prime ideal of $\mathcal{O}_{K,S}$ is of the form $\mathfrak{p}_{P,S}$ for a closed point $P \notin S$. There's a correspondence between the primes of $\mathcal{O}_{K,S}$ and the Galois orbits of points in $C(\overline{\mathbb{F}}_q)$ not in S.

When $C = \mathbb{P}^1$ and $S = \{\infty\}$ we saw that $\mathcal{O}_{K,S} = \mathbb{F}_q[x]$. Here the prime ideals are generated by irreducible elements. Let q = 5, some irreducibles are

From this description, we deduce that every prime ideal of $\mathcal{O}_{K,S}$ is maximal!

Example

Let
$$C: y^2 = x^3 - x$$
, $K = \mathbb{F}_q(C)$ and $S = \{\infty\}$. We saw previously that

$$\mathcal{O}_{K,S} = \mathbb{F}_q[x,y]/(y^2 - x^3 + x), \qquad \mathfrak{p}_{P,S} = \{f \in \mathcal{O}_{K,S} : f \text{ has a zero at } P\}$$

for closed
$$P \neq \infty$$
. Let $q = 7$: $\mathfrak{p}_{(0,0),S} = (x,y)$ and $\mathfrak{p}_{\{(2,\pm\sqrt{-1})\},S} = (x-2,x^3-x+1)$.

More generally,

- The primes in $\mathcal{O}_{K,S}$ correspond to primes \mathfrak{p} of $\mathbb{F}_q[x,y]$ containing $(y^2 x^3 + x)$.
- Since $(0) \subset (y^2 x^3 + x) \subseteq \mathfrak{p} \subseteq \mathfrak{m} \subset \mathbb{F}_q[x, y]$, we just determine the maximal ideals \mathfrak{m} .
- A generalisation of Hilbert's Nullstellensatz says: the maximal ideals of $\mathbb{F}_q[x,y]$ arise from points $P=(p_x,p_y)\in\overline{\mathbb{F}}_q^2$. They are $(x-p_x,y-p_y)\cap\mathbb{F}_q[x,y]$.
- The maximal ideals for $P, P' \in \overline{\mathbb{F}}_q^2$ are equal precisely when $\sigma(p_x) = p_x'$ and $\sigma(p_y) = p_y'$ for some $\sigma \in \operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$.
- The prime ideals in $\mathcal{O}_{K,S}$ correspond to closed points $\neq \infty$ on C.

The Chinese Remainder Theorem

Fix $K = \mathbb{F}_q(C)$, S a finite set of closed points. We have a ring $\mathcal{O}_{K,S}$ with prime ideals $\mathfrak{p}_{P,S}$.

The Chinese Remainder Theorem

Let $P, Q \notin S$ be distinct closed points. There's an isomorphism

$$\mathcal{O}_{K,S}/(\mathfrak{p}_{P,S}\cap\mathfrak{p}_{Q,S})\longrightarrow \mathcal{O}_{K,S}/\mathfrak{p}_{P,S}\times \mathcal{O}_{K,S}/\mathfrak{p}_{Q,S}.$$

In particular, given $s, t \in \overline{\mathbb{F}}_q$ defined over the residue fields of P and Q respectively, there's some $f \in \mathcal{O}_{K,S}$ such that f(P) = s and f(Q) = t.

For example, let
$$C: y^2 = x^3 - x$$
 over \mathbb{F}_7 , $S = \{\infty\}$, $P = (0,0)$ and $Q = \{(2, \pm \sqrt{-1})\}$.

Let's find
$$f = a(x) + yb(x) \in \mathcal{O}_{K,S}$$
 $(a, b \in \mathbb{F}_7[x])$ with $f(P) = 3$ and $f(Q) = 2\sqrt{-1}$.

$$f(P) = 3 \Rightarrow a(0) = 3,$$
 $f(Q) = 2\sqrt{-1} \Rightarrow a(2) + \sqrt{-1}b(2) = 2\sqrt{-1}.$

Can take b(x) = x and a(x) = 2x + 3 giving f(x) = 2x + 3 + xy.

Thank you for listening!

Any questions?