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Abstract

This paper is the final product from my place on Imperial College’s UROP programme.
It provides an introduction to the p-adic numbers and their applications, based loosely
on Gouvêa’s “p-adic numbers”, [1]. We begin by discussing how they arise in mathem-
atics, in particular emphasizing that they are both analytic and algebraic in nature.
Proceeding, we explore some of the peculiar results accompanying these numbers before
stating and proving Hensel’s lemma, which concerns the solvability of p-adic polyno-
mials. Specifically, we draw upon how Hensel’s lemma allows us to determine the
existence of rational solutions to a homogenous polynomial of degree 2 in 3 variables.
We conclude with a thorough analysis of the p-adic aspects of the Bernoulli numbers.
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1 Introduction

The p-adic numbers are most simply a field extension of Q, the rational numbers, which
can be formulated in two ways, using either analytic or algebraic methods. The material
presented in this chapter will be largely based upon that of Gouvêa [1] and Baker [2].

1.1 An analytic approach

We begin by recalling the notion of a metric space:

Definition 1.1. A metric space is a pair (X, d), where X is a set and

d : X ×X −→ R≥0

is a metric, i.e. it is such that the following hold:

(Da) d(x, y) = 0⇔ x = y, the identity of indiscernibles,

(Db) ∀x, y ∈ R, d(x, y) = d(y, x), symmetry,

(Dc) ∀x, y, z ∈ R, d(x, z) ≤ d(x, y) + d(y, z), the triangle inequality.

Definition 1.2. A complete metric space (X, d) is one in which every Cauchy sequence,
(an)n≥0 for an ∈ X, converges to some limit, a ∈ X, with respect to the metric d.

Remark. In a complete metric space, a sequence is convergent if and only if it is a Cauchy
sequence.

It is well known that Q equipped with the metric induced by the Euclidean norm is not a
complete metric space. For example, the sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ...

is Cauchy and clearly converges to π, which is not in Q. This idea motivates the definition
of a completion - a larger metric space which is complete. More precisely,

Definition 1.3. Given a metric space (X, d), the completion is (X̂, d), defined to be the
quotient space

X̂ =
CS(X)

∼
,

where CS(X), the sequence space of all Cauchy sequences in X, is quotiented by the equi-
valence relation:

(an) ∼ (bn)⇐⇒ lim
n→∞

d(an, bn) = 0. (1)

Remark. A metric space is a dense subset of its completion.

Now recall the following,
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Definition 1.4. A norm || · || on a ring R is defined to be a function

|| · || : R −→ R≥0

such that the following hold:

(Na) ||x|| = 0⇔ x = 0, positive definiteness,

(Nb) ∀x, y ∈ R, ||xy|| = ||x||||y||, multiplicativity,

(Nc) ∀x, y ∈ R, ||x+ y|| ≤ ||x||+ ||y||, the triangle inequality.

It can be shown that given a norm || · ||,

d(x, y) = ||x− y||

satisfies the criteria of a metric. We call this ‘the metric induced by || · ||’. We will be
considering this case exclusively.

It is easy to spot here that

∀x, y, z ∈ X, d(x− z, y − z) = d(x, y),

which we refer to ‘translation invariance, with respect to addition’ of the metric. Using
this, we may now rephrase (1) as (an − bn) → 0 as n → ∞, or (an − bn) ∈ Null(X), the
sequence space of all sequences in X converging to 0. Hence, the completion (X̂, d), can be
equivalently defined as

X̂ =
CS(X)

Null(X)
.

This alternative formulation allows us to observe that X̂ is in fact a ring, something that we
will show explicitly later on.

Using real analysis, the completion of Q with respect to the Euclidean norm is shown to be
R, the real numbers. This poses the question: what happens if we play around with different
norms?

We aim to construct an alternative norm on Q, which will arise from the following:

Definition 1.5. For x ∈ Z, let

ordp(x) = max{r : pr|x} ≥ 0,

and for x = a
b
∈ Q, let

ordp

(a
b

)
= ordp(a)− ordp(b).

The function ordp : Q −→ Z ∪ {∞} is called the p-adic valuation.

Proposition 1.6. For all x, y ∈ Q, we have:
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(i) ordp(x) =∞⇔ x = 0,

(ii) ordp(xy) = ordp(x) + ordp(y),

(iii) ordp(x+ y) ≥ min{ordp(x), ordp(y)}, with equality⇔ ordp(x) 6= ordp(y).

Proof. (i) This is obvious,

max{r : pr|x} =∞⇔ p∞|x⇔ x = 0.

Now, let

x = pn
a

b
and y = pm

c

d

for a, b, c, d,∈ Z, such that p - a, b, c, d, i.e. ordp(x) = n and ordp(y) = m.

(ii) Upon multiplying, we have

xy = pn+m
ac

bd

where p - ac, bd, so ordp(xy) = n+m.

(iii) Without loss of generality, assume that n ≤ m, so that

x+ y = pn
(a
b

+ pm−n
c

d

)
.

If m = n, then clearly ordp(x+ y) ≥ n. If m 6= n, then

x+ y = pn
(
ad+ pm−nbc

bd

)
.

As p - ad and m− n > 0, we have that ordp(x+ y) = n. �

These properties suggest a good candidate for our new norm.

Definition 1.7. The p-adic norm on Q is

|x|p =

{
p−ordp(x) x 6= 0

p−∞ x = 0.

Definition 1.8. A norm that satisfies the stronger property:

(Nc’) ∀x, y ∈ R, ||x+ y|| ≤ max{||x||, ||y||}, with equality ⇔ ||x|| 6= ||y||,

is called non-Archimedean.

Corollary 1.9. | · |p does in fact satisfy the criteria for being a norm on Q. Moreover, it is
non-Archimedean.

Proof. We omit the details, remarking that there are clear relationships between the prop-
erties of the p-adic valuation and (Na), (Nb), (Nc). �
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Example 1.10. In a non-Archimedean metric space, every triangle is isosceles.

Let x, y, z denote the corners of a triangle which is not equilateral. Without loss of generality,
we may assume that d(x, y) 6= d(y, z), i.e. ||x− y|| 6= ||y − z||. Then,

d(x, z) = ||x− z|| = max{||x− y||, ||y − z||} = max{d(x, y), d(y, z)}.

Thus two sides of the triangle must be of the same length. �

The p-adic norm is much more natural than you may think.

Definition 1.11. We say that two norms || · ||1 and || · ||2 are equivalent if there exists some
λ > 0 such that

|| · ||1 = || · ||λ2 .
Theorem 1.12 (Ostrowski’s theorem). Every non-trivial norm on Q is equivalent to either
| · |p for some prime p or | · |∞ = | · |, the usual Euclidean absolute value.

Proof. See [1, Theorem 3.1.3]. �

When working in the Euclidean norm, we have concrete notions of size and distance. The
analogue of this in the p-adic norm may not appear so apparent at first.

Example 1.13. Considering only powers of p, we have that large negative powers are re-
garded as being “large” and large positive powers are “small”. For example,

|1024|2 =
1

1024
,

thus we would say that 1024 is 2-adically small, despite being fairly large in the Euclidean
sense. Conversely,

5

294
≈ 0.017

is fairly small in the Euclidean sense, but∣∣∣∣ 5

294

∣∣∣∣
5

=
1

5
and

∣∣∣∣ 5

294

∣∣∣∣
7

= 49. �

Example 1.14. We also highlight that as p varies, so does the distance between any two
fixed numbers. Considering the Euclidean norm, we have that∣∣∣∣15 − 5

27

∣∣∣∣ =
2

135
,

so we’d say that these numbers are very close. Now looking at the p-adic distances:∣∣∣∣15 − 5

27

∣∣∣∣
2

=
1

2
,

∣∣∣∣15 − 5

27

∣∣∣∣
3

= 27,

∣∣∣∣15 − 5

27

∣∣∣∣
5

= 5,

so 2-adically we may again say that the numbers are fairly close together, whereas 3-adically
they are not.

Additionally, with respect to larger primes we have:∣∣∣∣15 − 5

27

∣∣∣∣
p

=

∣∣∣∣ 2

135

∣∣∣∣
p

= 1, for p > 5. �
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In fact for any fixed pair x, y ∈ Q, there always exists some p′ such that for all p > p′,
|x− y|p = 1.

Other interesting peculiarities also arise working in | · |p, such as the convergence of some
sequences.

Example 1.15. First, consider the sequence given by an = pn, for n ∈ N. I claim that,

lim
n→∞

pn =


0 with respect to | · |p,
does not exist with respect to | · |q for q 6= p,

∞ with respect to | · |∞.

We’ll discuss the cases in the order listed above. The first case is trivial upon noticing that,

|pn|p =
1

pn
→ 0 as n→∞.

In the second case, considering consecutive terms,

|pn+1 − pn|q = |pn(p− 1)|q = |p− 1|q,

a non-zero constant. Hence, the sequence cannot be Cauchy and therefore it cannot be
convergent. Finally, the third case follows from a routine real analysis argument. Fix R > 0.
Notice that for some q ≥ 1 we have that p = 1 + q and so, pn = (1 + q)n > 1 + nq. Thus,

∀n > R

q
, pn > 1 + nq > R. �

Before moving onto the next example, it is necessary to introduce some notation concerning
the base p expansion of integers. It is well known, by a direct application of the Euclidean
algorithm, that for any fixed prime p and n ∈ Z, there is a unique expression:

n = n0 + n1p+ n2p
2 + · · ·+ nkp

k,

for some k ∈ N and integers 0 ≤ n0, . . . , nk ≤ p− 1. We denote,

sp(n) = n0 + n1 + · · ·+ nk.

Lemma 1.16. In the same notation as above,

ordp(n!) =
n− sp(n)

p− 1
.

Proof. Writing n! explicitly as n! = 1 · 2 · 3 · · ·n, we notice that in the product there are⌊
n

p

⌋
multiples of p,

⌊
n

p2

⌋
multiples of p2, and more generally

⌊
n

pi

⌋
multiples of pi.

Thus, there are in total ⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

pk

⌋
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factors of p in n!. Now, using the identity⌊
n

pi

⌋
= nkp

k−i + · · ·+ ni+1p+ ni,

and some simple algebraic manipulation, the desired expression is obtained. �

Remark. In practice it is often more useful to use the estimate

ordp(n!) <
n

p− 1
, or |n!|p >

1

p
n

p−1

.

Example 1.17. Consequently, we have our next example of a convergent sequence with
respect to | · |p. Let an = n! for n ≥ 0. By the above result, we have that for any p

|n!|p = p
p−1

n−sp(n) → 0 as n→∞,

hence (an)n≥0 is a null sequence. �

Naturally, we question whether Q is complete with respect to | · |p. The answer is no.

Example 1.18. Let p be odd and for some integer 1 < b < p − 1, consider the sequence
given by an = bp

n
for n ≥ 0. We see that this is Cauchy with respect to | · |p, by estimating

|an+1 − an|p = |bpn+1 − bpn|p = |bpn|p|bp
n(p−1) − 1|p ≤

1

pn
,

having used Fermat’s little theorem in the latter step, which says that bφ(p
n) ≡ b (mod pn),

where φ denotes Euler’s totient function, so clearly:

|an+1 − an|p → 0 as n→∞.

Now, suppose that the sequence converges to some limit l ∈ Q (we will obtain a contradic-
tion). First, notice that

l = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

(an)p =
(

lim
n→∞

an

)p
= lp,

so l is a (p− 1)th root of unity ⇒ l = ±1. Estimating using the non-Archimedean property,
it becomes immediate that

|b−±1|p < 1, i.e. p|b− 1 or p|b,

but this cannot be as 1 < b < p− 1. �

Now we question, is the completion with respect to | · |p still R? Again, the answer is no.
In fact, in this way we have constructed a totally new metric space which we call Qp, the
p-adic numbers.

Theorem 1.19. The space Qp forms a field.
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Proof. Referring back to the definitions on page 3, we first claim that Null(Q)/CS(Q), thus
Qp forms a ring. Taking the operation + to be the natural one, it is clear that (Null(Q),+)
is a subgroup of (CS(Q),+). For the claim to be true, it is now only necessary to show that
if (an) ∈ Null(Q) and (xn) ∈ CS(Q), then we have that (an)(xn) = (anxn) ∈ Null(Q). As
the sequence (xn) is Cauchy, ∃N > 0 such that for all n ≥ 0,

|xn|p < M = max{|x1|p, . . . , |xN−1|p, |xN |p + 1}.

Hence,
|anxn|p = |an|p|xn|p < |an|pM → 0 as n→∞.

Showing further that in fact Null(Q) is a maximal ideal of CS(Q), we obtain that Qp is
actually a field. For this, first notice that the that ideal is proper. Now, fix some sequence
(an) ∈ CS(Q)−Null(Q), then ∃N > 0 such that ∀n > N, an 6= 0. Clearly, defining

λn =

{
1 0 ≤ n ≤ N

0 N < n,

we have that the sequence (λn) ∈ Null(Q) and considering now the ideal given by (Null(Q), (an)),
we have that (bn) ∈ (Null(Q), (an)), where bn = an − anλn + λn. We have too that
(bn) /∈ Null(Q) and it has a multiplicative inverse (b−1n ). For n, m > N

|b−1n − b−1m |p =
|am − an|p
|an|p|am|p

→ 0 as n→∞,

using that (an) is both Cauchy and bounded away from 0. So we in fact have that (b−1n ) ∈
CS(Q) and therefore (1) ∈ (Null(Q), (an))⇒ (Null(Q), (an)) = CS(Q). �

Analogously, we can define the space of p-adic integers, Zp, as the completion of Z with
respect to | · |p.

Theorem 1.20. Zp is in fact the unit disc in Qp about 0, i.e.

Zp = {x ∈ Qp : |x|p ≤ 1}.

Proof. (⊆) Let a ∈ Zp, then
a = lim

n→∞
an,

with respect to | · |p, for some Cauchy sequence (an)n≥0 in Z. As for all n ≥ 0, an ∈ Z,
we have that |an|p ≤ 1. Thus, taking the limit as n → ∞, it is true that |a|p ≤ 1, i.e.
a ∈ {x ∈ Qp : |x|p ≤ 1}.

(⊇) First let x ∈ Q be such that |x|p ≤ 1, i.e. x = a
b

for a, b ∈ Z and without loss of
generality, p - b. Clearly, we have that

xn =
a+ pn

b
→ a

b
, as n→∞,
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so x ∈ Zp. Now, if x ∈ Qp is such that |x|p ≤ 1, then x is the limit of some Cauchy sequence
(xn)n≥0 in Q. So ∃N > 0 such that ∀n ≥ N ,

|xn − x|p < 1⇒ |xn|p ≤ max{|xn − x|p, |x|p} ≤ 1

and the sequence

yn =

{
0 0 ≤ n < N

xn N ≤ n,

converges to x, so x ∈ Zp. �

Proposition 1.21. Every a ∈ Zp, is the limit of a sequence of non-negative integers.

Proof. Recalling an earlier remark, a space is dense in its completion, so given a ∈ Zp and
n ∈ N there exists some integer 0 ≤ an ≤ pn − 1 such that

|x− an|p ≤
1

pn
→ 0 as n→∞. �

1.2 An algebraic approach

Although the analytic formulation is generally the easiest to work with, we introduce an al-
gebraic definition which will be particularly useful later on when we consider Hensel’s lemma,
a result that allows us to find solutions to polynomials modulo powers of primes.

From this algebraic perspective, we first work towards defining the p-adic integers, and will
do so as a sequence space denoted Z̃p. Consider the sequence of maps between the following
groups:

. . .
φ4−→ Z/pZ4 φ3−→ Z/p3Z φ2−→ Z/p2Z φ1−→ Z/pZ,

where
φi(a) = a (mod pi).

This allows us to write:
Z̃p = lim

←−
n

Z/pnZ,

called the ‘projective limit’ of the system. More explicitly, it is a sequence space such that
(an)n≥1 ∈ Z̃p if for all n ≥ 1,

(i) an ∈ Z/pnZ, and

(ii) an ≡ an (mod pn).

Example 1.22. Let p = 2. We can start to define such a sequence (an)n≥1 ∈ Z̃2 as follows,

a1 ∈ {0, 1}, take a1 = 1; a2 ∈ {1, 3}, take a2 = 3; a3 ∈ {3, 7}, take a3 = 3

a4 ∈ {3, 11}, take a4 = 11; a5 ∈ {11, 27}, take a5 = 27.

Thus 1, 3, 3, 11, 27, . . . ∈ Z̃2, or alternatively we may view this as:

(1, 3, 3, 11, 27, . . .) ∈ Z̃2 ⊆ Z/2Z× Z/4Z× Z/8Z× Z/16Z× Z/32Z× · · · . �
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Equipping Z̃p with the addition, multiplication, zero and unit defined by:

(an) + (bn) = (an + bn), (an) · (bn) = (an · bn), 0 = (0, 0, 0, . . .), 1 = (1, 1, 1, . . .),

an easy check shows that we have given the space a ring structure. Noting too that Z̃p
is a domain, and given a domain X there exists Frac(X), it’s fraction field, we obtain a
corresponding algebraic definition for Qp:

Definition 1.23. The p-adic numbers, from this point of view, are henceforth defined to be

Q̃p = Frac(Z̃p).

To establish a norm on Q̃p, we shall define the p-adic valuation in the context of sequence
spaces.

Definition 1.24. For a = (an)n≥0 ∈ Z̃p, let

õrdp(a) = max{n : an−1 ≡ 0 (mod pn)} ≥ 0,

and for a = x
y
∈ Q̃p, as before let

õrdp

(
x

y

)
= õrdp(x)− õrdp(y).

From this, we again define the norm |̃ · |p to be

|̃x|p =

{
p−õrdp(x) x 6= 0

p∞ x = 0.

We will soon see that the two definitions of the valuation, and consequently the corresponding
norms, are equivalent.

1.3 The correspondence

We have introduced the p-adic numbers and integers in two different ways to be able to discuss
results surrounding them more succinctly. Now we’ll show that in fact these definitions are
equivalent, but before doing so it’s necessary to introduce the p-adic expansion of p-adic
numbers - the analogue of writing integers in base p, [2].

1.3.1 The p-adic expansion

First, let a ∈ Zp, then by Proposition 1.21, a is the limit of a sequence of non-negative
integers. This enables a choice of some integer 0 ≤ a0 ≤ p− 1, such that,

|a− a0|p <
1

p
⇒ a− a0

p
∈ Zp.
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The same argument allows us to find an integer 0 ≤ a1 ≤ p− 1, such that

|a− (a0 + a1p)|p <
1

p
⇒ a− (a0 + a1p)

p
∈ Zp.

Eventually, we obtain that the sequence (bn)n≥1 given by,

bn = a0 + a1p+ a2p
2 + · · ·+ an−1p

n−1

converges to a, allowing us to write

a = a0 + a1p+ a2p
2 + · · · ,

an infinite sum which we call the p-adic expansion of a p-adic integer. More generally, let
a ∈ Qp be such that |a|p > 1, i.e. |a|p = pk for some k ∈ N. Thus, considering b = pka ∈ Zp,
if

b = b0 + b1p+ b2p
2 + · · · ,

dividing by pk we obtain

a =
b0
pk

+
b1
pk−1

+
b2
pk−2

+ · · ·+ bk + bk+1p+ · · ·+ bk+rp
r + · · · .

To summarise, for a ∈ Qp,

◦ if |a|p ≤ 1, then a =
∑∞

k=0 akp
k for some integers 0 ≤ ak ≤ p− 1,

◦ if |a|p > 1, then for some r ∈ N, a =
∑∞

k=−r akp
k for some integers 0 ≤ ak ≤ p− 1.

This motivates the idea that we may think of Zp as being analogous to K[[x]] and Qp as
being analogous to K((x)), the rings of power series and Laurent series over some field K.
More precisely, what we’ve constructed here is the analogy

Zp ←→ K[[x]] Qp ←→ K((x)),

which we will return to look at more later on.

Theorem 1.25. Unlike the more familiar decimal expansion, the p-adic expansion is unique.

Proof. We need only show this for the p-adic integers, the case of the p-adic numbers then
follows. For a ∈ Zp, suppose that

a = a0 + a1p+ a2p
2 + · · ·

= a′0 + a′1p+ a′2p
2 + · · · .

Let d ∈ N be the smallest such that ad 6= a′d. Without loss of generality, suppose that
ad > a′d, then 1 ≤ ad − a′d ≤ p− 1. Write

bn = a0 + a1p+ a2p
2 + · · ·+ anp

n

b′n = a′0 + a′1p+ a′2p
2 + · · ·+ a′np

n,
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then we have that

bd − b′d = (ad − a′d)pd ⇒ |bd − b′d|p =
1

pd
.

However, by the non-Archimedean property,

|bd − b′d|p ≤ max{|bd − a|p, |b′d − a|p} <
1

pd
.

Having obtained a contradiction, we conclude that the expansion is unique. �

We have formally introduced the p-adic expansion in the analytic context for the purposes
of the next result, however an expansion also exists from the algebraic point of view and this
will be established soon.

Theorem 1.26. Zp ∼= Z̃p.

Proof. (Based on [3, Section 1.1.2]). We first consider the map

Φ : Zp −→ Z̃p,
a 7−→ (φ1(a), φ2(a), . . .),

where for i ≥ 1 and a =
∑∞

k=0 akp
k (it’s p-adic expansion), we have

φi : Zp −→ Z/piZ,

a 7−→
i−1∑
k=0

akp
k (mod pi).

Verifying that Φ defines a homomorphism is equivalent to doing so for each φi. Clearly,
under φi, 1 always maps to 1 and the additive property also holds. Multiplicativity follows
upon observing that

2i∑
k=0

k∑
l=0

albk−lp
k =

2i∑
l=0

2i∑
k=l

albk−lp
k

=
2i∑
l=0

2i−l∑
k=0

albkp
l+k

=
i∑
l=0

alp
l

(
i∑

k=0

bkp
k +

2i−l∑
k=i+1

bkp
k

)
+

2i∑
l=i+1

2i−l∑
k=0

albkp
l+k

=

(
i∑
l=0

alp
l

)(
i∑

k=0

bkp
k

)
+

i−1∑
l=0

alp
l

2i−l∑
k=i+1

bkp
k +

i−1∑
k=0

bkp
k

2i−k∑
l=i+1

alp
l

to establish the identity:(
i∑

k=0

akp
k

)(
i∑

k=0

bkp
k

)
=

2i∑
k=0

k∑
l=0

albk−lp
k −

i−1∑
k=0

(
ak

2i−k∑
l=i+1

blp
l + bk

2i−k∑
l=i+1

alp
l

)
pk,
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i.e. for i ≥ 0, φi+1(a)φi+1(b) ≡ φi+1(ab) (mod pi+1). Next, choose (a1, a2, . . .) ∈ Z̃p, and for
n ≥ 1, let 0 ≤ xn ≤ pn − 1 be the unique integer such that xn ≡ an (mod pn). In base p,
write

xn = λn,0 + λn,1p+ · · ·+ λn,n−1p
n−1.

For 0 ≤ i ≤ n − 1, we have that λn+1,i = λn,i ⇒ λn,i → λi for some λi, as n → ∞. Using
this idea, let

Ψ : Z̃p −→ Zp,

(a1, a2, . . .) 7−→
∞∑
k=0

λkp
k.

We’ll show that this defines yet another ring homomorphism. Again, it is clear that 1 maps
to 1. In addition to the notation used in constructing Ψ, let (b1, b2, . . .) ∈ Z̃p, 0 ≤ yn ≤ pn−1
be the unique integer such that yn ≡ bn (mod pn) and

yn = µn,0 + µn,1p+ · · ·+ µn,n−1p
n−1

be the base p expansion. Considering first (a1 + b1, a2 + b2, . . .) ∈ Z̃p, we have that

xn + yn ≡ an + bn (mod pn)

and
xn + yn = (λn,0 + µn,0) + (λn,1 + µn,1)p+ · · ·+ (λn,n−1 + µn,n−1)p

n−1.

As λn,i+µn,i → λi+µi as n→∞, the additive result follows. Now consider (a1b1, a2b2, . . .) ∈
Z̃p, we have here that

xnyn ≡ anbn (mod pn)

so

xnyn = θn,0 + θn,1p+ · · ·+ θn,n−1p
n−1, for θn,i =

n−1∑
j=0

λn,jµn,i−j.

Using this, clearly

θn,i →
n−1∑
j=0

λjµi−j as n→∞,

giving the desired expression for multiplicativity. Moreover, both Φ ◦ Ψ and Ψ ◦ Φ provide
identity maps on Z̃p and Zp respectively. �

Remark. The function Ψ provides the p-adic expansion from the algebraic perspective.

Having established this isomorphism, abusing notation slightly, we use it to show that

ordp(a) = õrdp(a), for all a.

13



Proof. Let a =
∑∞

k=0 akp
k ∈ Zp, for some integers 0 ≤ ak ≤ p − 1, and let ordp(a) = N .

Then,
a

pN
=
∞∑
k=0

akp
k−N =

a0
pN

+
a1
pN−1

+ · · ·+ aN + aN+1p+ · · · ∈ Zp.

Clearly aN + aN+1p+ · · · is a p-adic integer and so we obtain that

a0
pN

+
a1
pN−1

+ · · · ∈ Zp ⇒ a0 + a1p+ · · · aN−1pN−1 ≡ 0 (mod pN).

We now have that õrdp(Φ(a)) ≥ N . Suppose that for some k ≥ 1,

a0 + a1p+ a2p
2 + · · ·+ aN+k−1p

N+k−1 ≡ 0 (mod pN+k),

then pN+k|a. This is clearly a contradiction, so õrdp(Φ(a)) = N . �

From now on we refer to both Zp and Z̃p by the former. Similarly for Qp and Q̃p.

Another application of the p-adic expansion allows us to establish the interesting nice result:

Corollary 1.27. Zp and Qp have the cardinality of R, the cardinality of ‘continuum’.

Proof. A consequence to the uniqueness of the p-adic expansion is that the map

f : Zp −→ (Z/pZ)N,
∞∑
k=0

akp
k 7−→ (a0, a1, a2, . . .),

defines a bijection. Thus by [4, Page 2],

|Zp| = p|N| = 2|N|,

which is the cardinality of R. Now, as Qp = Frac(Zp), it is a subset of Zp × Zp, which also
has cardinality of continuum. Injecting Qp into Zp × Zp, we see it has both at most and at
least cardinality of continuum. �
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2 Discrete valuation rings and fields

A generalisation of the p-adic norm is a valuation, ν. From here on we use K to denote an
arbitrary field.

Definition 2.1. A valuation on K is a map

ν : K −→ R ∪ {∞}

such that the following hold:

(Va) ∀x, y ∈ K, ν(xy) = ν(x) + ν(y),

(Vb) ∀x, y ∈ K, ν(x+ y) ≥ min{ν(x), ν(y)},

(Vc) ν(x) =∞⇔ x = 0.

We say that a valuation is discrete if the image of K− {0} under ν is isomorphic to rZ for
some r > 0.

Definition 2.2. A field equipped with a non-trivial (discrete) valuation is called a (discrete)
valuation field, a (D)VF.

Example 2.3. The p-adic valuation, unsurprisingly, provides a valuation on both Q and
Qp, making them discrete valuation fields. �

Example 2.4. For an arbitrary element f(x) ∈ K[x], there exists some f0(x) ∈ K[x], with
a non-zero constant term, such that f(x) = xnf0(x) where n ∈ N. We define ν(f) = n, and
extend to the field K(x) by letting

ν

(
f

g

)
= ν(f)− ν(g).

Checking that (Va), (Vb) and (Vc) hold is a straight forward task, thus ν is a discrete
valuation and K(x) is a discrete valuation field. �

Example 2.5. For each non-zero Laurent series in K((x)), there is an expression of the form

f(x) =
∑
n≥n0

anx
n,

for some an0 6= 0. Define ν(f) = n0. This time we will verify that this is a discrete valuation,
thus K((x)) equipped with it is a discrete valuation field.

First, notice that the image of this map is clearly Z, so it is discrete. Now, let

f(x) =
∑
n≥n0

anx
n, g(x) =

∑
n≥m0

bnx
n,
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where an0 , bm0 6= 0 and without loss of generality, assume that n0 ≤ m0. We have that

f(x)g(x) =
∑

n≥n0+m0

(∑
i+j=n

aibj

)
xn,

where the coefficient of xn0+m0 is non-zero, verifying (Va). In the same notation,

f(x) + g(x) =
∑

m0>n≥n0

anx
n +

∑
n≥m0

(an + bn)xn,

hence ν(f + g) ≥ n0 = min{ν(f), ν(g)}. Finally, it is clear that ν(f) =∞⇔ f = 0, so (Vc)
follows. �

Definition 2.6. Given a (discrete) valuation ν on a (discrete) valuation field K,

R = {x ∈ K : ν(x) ≥ 0}

is the (discrete) valuation ring, the (D)VR, of K.

Clearly, we have that ν(1) = 0 thus both 0, 1 ∈ R. Now let x, y ∈ R, then

ν(x+ y) ≥ min{ν(x), ν(y)} ≥ 0 and ν(xy) = ν(x) + ν(y) ≥ 0,

so x+ y, xy ∈ R. Hence, R does in fact define a subring of K. It can be further shown that
K is the fraction field of R.

Example 2.7. Zp is a discrete valuation ring, that of the valuation in Example 2.3 defined
on Qp. �

Example 2.8. K[[x]] is a discrete valuation ring, that of the valuation in Example 2.5 defined
on K((x)). �

But what about the discrete valuation rings given rise to by the discrete valuation fields Q
and K(x)?

2.1 Localizations

Definition 2.9. Given R, a commutative ring with unit 1R, and a subset S ⊆ R which is
closed under multiplication and such that 0 /∈ S, 1R ∈ S we define the localization of R at
S to be

RS =
{a
b

: a ∈ R, b ∈ S}
∼

,

where the equivalence relation is given by:

a

b
∼ a′

b′
⇐⇒ ∃u ∈ S such that u(ab′ − a′b) = 0.

In the context of the p-adics, we’ll be considering a specific type of localization.
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Proposition 2.10. Let I be a prime ideal of R. I claim that R − I ⊂ R provides such a
candidate.

Proof. To start, by the definition of being an ideal, I ⊂ R is an additive subgroup, thus
0 ∈ I ⇒ 0 /∈ R − I. Additionally, as the ideal is proper, 1R /∈ I ⇒ 1R ∈ R − I. Finally, if
a, b ∈ R − I then, by definition of I being prime, ab ∈ I ⇒ a ∈ I or b ∈ I, a contradiction.
Thus ab ∈ R− I and we have that R− I is closed under multiplication. �

Contrary to the usual notation, we write RI instead of RR−I and refer to this as the ‘local-
ization of R at the prime ideal I’.

Example 2.11. A simple example is given by R = Z and I = (2), the principal ideal
generated by 2. Explicitly,

(2) = {2x : x ∈ Z} = {even integers},

which is clearly prime. Thus,

Z(2) =
{a
b
∈ Q : b is odd

}
=
{a
b
∈ Q : 2 - b

}
. �

Example 2.12. More generally, as (p) / Z is prime for any prime number p, we can write

Z(p) =
{a
b
∈ Q : p - b

}
. �

It turns out that the discrete valuation rings associated to Q as in Example 2.3 and K(x) as
in Example 2.4, are in fact the localizations Z(p) and K[x](x) respectively.

This discussion allows us to extend the analogy we noted earlier to the following:

Z←→ K[x] Z(p) ←→ K[x](x) Zp ←→ K[[x]]

Q←→ K(x) Qp ←→ K((x))

However, considering norms on these rings, we can conclude that this is not completely
accurate. Theorem 1.12 told us that up to equivalence the non-Archimedean norms on Q
are given by | · |p and the only Archimedean norm is | · | = | · |∞. Noting that for n,m ∈ N,

(n) ⊇ (m)⇔ n|m,

we see that the maximal ideals of Z are exactly (p) for primes p, i.e. alternatively, we can
view this as the non-Archimedean norms on Q being in correspondence with the maximal
ideals of Z.

Venturing slightly beyond the scope of this paper, we can generalise this notion further.

While Z and K[x] look different, they are actually prototypical examples of domains called
‘Dedekind domains’, for which the following holds:
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Theorem 2.13. Given a Dedekind domain X, there exists an injective map

{maximal ideals of X} ↪→ {non-Archimedean norms on Frac(X), up to equivalence}.

Moreover, this map is an isomorphism if the class group of X is torsion, i.e. all elements
have finite order.

This is the closest that we can get to an analogue of Theorem 1.12 for Dedekind domains
in general. For additional details we refer the reader to [5, Theorem 4.2].

Working with K = C (this field is nice to work in due to it being algebraically closed), the
maximal ideals of C[x] are, by the fundamental theorem of algebra, given by

{(x− a) : a ∈ C},

each of which gives rise to a non-Archimedean norm on C(x). However, in this case another
non-Archimedean norm can be constructed from the valuation given by ν(f) = − deg(f) for
f ∈ C(x) and unlike when we considered Q, an Archimedean norm doesn’t exist.

Before reverting our attention to the discussion of DVFs and DVRs, we’ll discuss some
further results concerning localizations and the p-adics.

Lemma 2.14. (i) Z ⊆ Z(p) ⊆ Zp

(ii) Z(p) = Q ∩ Zp

Proof. (i) The first inclusion is trivial, so we’ll focus on the second. Suppose that x = a
b
∈ Q

satisfies p - b. Then ordp(b) = 0 and so

ordp(x) = ordp(a) ≥ 0⇒ |x|p =
1

pordp(x)
≤ 1.

(ii) (⊆) The left inclusion is clear by the previous result.

(⊇) For the right inclusion, let x ∈ Q ∩ Zp so x = a
b
∈ Q and∣∣∣a

b

∣∣∣
p
≤ 1⇒ ordp(b) ≤ ordp(a). (2)

Without loss of generality we may assume that not both a, b are multiples of p, if so,

a

b
∼

a
p

b
p

with u = 1R ∈ R− (p). By (2), ordp(b) = 0 so x ∈ Z(p). �

A ‘short exact sequence’ is a series of abelian group homomorphisms

0 −→ A
f−→ B

g−→ C −→ 0,
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where f is injective, g is right-cancellative, {0} = ker(f), im(f) = ker(g) and im(g) = {0}.
In this case, there exists the following isomorphism:

C ∼= B/im(f).

Further to this, a short exact sequence is ‘split’ if there exists a homomorphism h : C −→ B
such that the composition g ◦ h is the identity on C. Thus, if the groups in question are all
abelian,

B ∼= A× C.

This second quality is one which we will use later on. For now, we use this notion to derive:

Theorem 2.15. The following isomorphism exists,

Zp/pnZp ∼= Z/pnZ ∼= Z(p)/p
nZ(p).

Proof. Clearly the following defines a short exact sequence:

0 −→ Zp
·pn−→ Zp −→ Z/pnZ −→ 0,

and moreover im(·pn) = pnZp. Thus, the first isomorphism holds. Replacing Zp by Z(p), we
obtain the isomorphism between the first and last quotients. �

Now, upon noticing that px− 1 is irreducible over Zp we introduce the notation

Zp
[

1

p

]
:=

Zp[x]

(px− 1)
.

Again, a similar argument this time involving the short exact sequence

0 −→ Zp[x]
·(px−1)−→ Zp[x] −→ Qp −→ 0,

provides the following isomorphisms:

Theorem 2.16. (i) Zp[1p ] ∼= Qp,

(ii) Z(p)[
1
p
] ∼= Q.

Returning to the discussion of discrete valuation rings, we introduce a new concept.

Definition 2.17. A (commutative) ring is local if it has exactly one maximal ideal.

Example 2.18. Z is not local. �

Example 2.19. K is local. Notice that an ideal contains either no units and is the ideal (0),
or it contains some unit and is the whole field K. Thus (0) is the unique maximal ideal. �

Theorem 2.20. A DVR is a local ring whose unique maximal ideal is

m = {x ∈ K : ν(x) > 0}. (3)
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We will prove this by first stating some results that will be useful in later calculations.

Lemma 2.21. (i) For x, y ∈ R, ν(x) ≤ ν(y)⇔ x|y.

(ii) R× = {x ∈ K : ν(x) = 0}.

Proof. (i) (⇒) Suppose that ν(x) ≤ ν(y), and x 6= 0 (otherwise the statement is clear).
Then

ν
(y
x

)
= ν(y)− ν(x) ≥ 0, so

y

x
∈ R,

i.e. x|y.

(⇐) If x|y then for some a ∈ R, y = ax. So

ν(y) = ν(ax) = ν(a) + ν(x)⇒ ν(x) ≤ ν(y),

as each of these quantities is non-negative.

(ii) (⊆) Let x ∈ R×, then there exists some y ∈ R× such that

0 = ν(1) = ν(xy) = ν(x) + ν(y)⇒ ν(x) = −ν(y).

But both of these quantities are non-negative and therefore must be 0.

(⊇) Let x ∈ R be such that ν(x) = 0, then

ν

(
1

x

)
= −ν(x) = 0⇒ 1

x
∈ R⇒ x ∈ R×. �

Before proving the theorem, we may now utilise Lemma 2.21 to rewrite (3) as

m = R−R×,

i.e. the ideal of non units in R.

Proof. Some simple verification confirms that m is non-empty, it is a subring of R and
∀r ∈ R, ∀x ∈ m we have xr ∈ m, hence m is an ideal. Let I be another ideal of R such that
m ⊂ I. Then I contains some unit of R and is actually itself R, therefore m is maximal.
Finally we need to obtain uniqueness of m. Suppose that J is yet another ideal of R, and
that it too is maximal. Assume that J contains no units of R so that J 6= R, but then
J ⊆ m, contradicting maximality. �

Applying Theorem 2.20, we obtain these further examples:

Example 2.22. Zp is local and it’s maximal ideal is pZp = (p). �

Example 2.23. Z(p) is local and it’s maximal ideal is
{
a
b
∈ Q : p | a, p - b

}
. More generally,

it is true that the localisation of a ring R at a prime ideal I of R is local. �

Moreover, we can work further to classify all the ideals of R.
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Proposition 2.24. R is a PID.

Proof. Let (0) 6= I / R, thus there exists some x ∈ I. If ν(x) = 0, then I = R = (1). Else,
ν(x) > 0 and there exists some x0 ∈ I such that

ν(x0) = n = min{ν(x) : x ∈ I} > 0.

Now, choose an arbitrary element y ∈ I so,

ν(y) ≥ n⇒ ν

(
y

x0

)
≥ 0⇒ y

x0
∈ R⇒ y ∈ (x0).

As we chose y arbitrarily, it is the case that I ⊆ (x0). Thus I is principal. �

Definition 2.25. A generator of a maximal ideal is called a uniformizer.

Using that R is a PID, the maximal ideal m has a uniformizer, call it m. Without loss of
generality we may assume that ν(m) = 1.

We now have enough information to be able to list all the ideals of R.

Theorem 2.26. Let R be a DVR, then it’s ideals are given by (0), mn for n ∈ Z≥1 and R.

Proof. Clearly as R is a PID, its ideals are

{(x) : x ∈ R}.

By Lemma 2.21(i), (x) = (y)⇔ ν(x) = ν(y), so the distinct ideals are given by:

(x0), (x1), (x2), (x3), . . . and (0),

where xn ∈ R and ν(xn) = n for all n ∈ N. Noting that ν(mn) = n, we can take xn = mn

and the result follows. �
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3 Solving polynomials in Zp
In this chapter we discuss Hensel’s lemma, concerning the solvability of p-adic polynomials.
Further, we apply this to be able to discuss the p-adic roots of unity and determine exactly
when degree two homogenous polynomials in three variables have a non-trivial rational
solution (for the latter, we refer to [1] for additional detail).

3.1 Hensel’s lemma

Let’s first restrict our attention to finding roots in Zp.

In calculus, when considering some function f(x) ∈ R[x], Newton’s method is an effective
way to find it’s roots, i.e. given an initial guess it successively produces better approxima-
tions.

Geometrically, if the initial guess is x0, the next approx-
imation is the x-coordinate of the intersection of the x-
axis with the tangent of the graph at (x0, f(x0)). For
this method to be valid, it is crucial that such an in-
tersection point exists or more precisely, that f ′(x0) 6=
0. In the figure, f ′(0) = 0 and so the method would
fail.

This argument for finding roots can be extended to Zp and
is summarised in the next result:

Theorem 3.1 (Hensel’s lemma). Let f(x) ∈ Zp[x] and suppose that there exists some α1 ∈
Zp such that the following are satisfied:

(a) f(α1) ≡ 0 (mod p)

(b) f ′(α1) 6≡ 0 (mod p).

Then there exists some unique α ∈ Zp such that:

(i) α1 ≡ α (mod p)

(ii) f(α) = 0.

Remark. To make precise the definition of the derivative in this context; if

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n ∈ Zp[x],

then
f ′(x) = a1 + 2a2x+ . . .+ nanx

n−1 ∈ Zp[x].

Before proving and discussing some applications of this theorem, we look further into the
conditions it requires to be met.

22



Definition 3.2. A polynomial f(x) ∈ K[x] of degree n is said to be separable if it has n
distinct roots in some extension K ⊂ L.

Proposition 3.3. A polynomial f(x) ∈ K[x] is separable if and only if f(x) and f ′(x) have
no common roots in any extension of K.

Proof. (⇒) Suppose that f(x) ∈ K[x] is separable and in some K ⊂ L,

f(x) =
n∏
i=1

(x− λi),

so that

f ′(x) =
n∑
i=1

(x− λ1) · · · (x− λi−1)(x− λi+1) · · · (x− λn).

If f(x) and f ′(x) have a root in common in L, then for some i, (x − λi)|f ′(x) which is im-
possible. Thus f(x) and f ′(x) cannot have a root in common in L ⇒ f(x) and f ′(x) cannot
have a root in common in K.

(⇐) Suppose that f(x) ∈ K[x] is inseparable, i.e. in all extensions K ⊂ L, there is some
λ ∈ L and g(x) ∈ L[x] such that

f(x) = (x− λ)2g(x).

Hence,
f ′(x) = (x− λ){2g(x) + (x− λ)g′(x)}

and (x − λ) is a common factor of f(x) and f ′(x) in L[x]. I claim that f(x) and f ′(x)
must therefore have a non-trivial common factor in K[x]. Suppose not, then there exist
φ(x), ψ(x) ∈ K[x] such that

φ(x)f(x) + ψ(x)f ′(x) = 1

in K[x], then this also holds in L[x] which is a contradiction. �

Returning to Zp from this discussion of K[x], the notion of separability motivates us to
rephrase the conditions stated in Hensel’s lemma.

Proposition 3.4. The conditions (a) and (b) stated in Hensel’s lemma are equivalent to the
following:

ᾱ1 ∈ Fp is a root of f̄(x) ∈ Fp[x] of multiplicity 1, (4)

where the overbar notation represents the reduction modulo p from Zp to Fp.

Proof. First assume that (a) and (b) hold. If ᾱ1 ∈ Fp is a repeated root of f̄(x) ∈ Fp[x]
then f̄(x) is inseparable in Fp[x]. By Proposition 3.3, ᾱ1 is also a root of f̄ ′(x) ∈ Fp[x],
contradicting (b). Conversely, assuming that (4) holds, (a) follows immediately. Supposing
that f(α1) ≡ 0 (mod p), i.e. that f̄ ′(ᾱ1) = 0, then f̄(x) and f̄ ′(x) have the root ᾱ1 in
common in Fp, a contradiction. So (b) follows too. �
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Corollary 3.5. Let f(x) ∈ Zp[x]. If f̄(x) ∈ Fp[x] is separable, then the conditions of
Hensel’s lemma are satisfied by default.

We shall now prove Hensel’s lemma, a proof taken from [1, Section 3.4].

Proof. Using the notion of Zp being the completion of Z with respect to the p-adic norm,
we construct α as being the limit of some Cauchy sequence of integers α1, α2, α3, . . .. We
want to define our sequence according to the criteria: for n ≥ 1,

◦ f(αn) ≡ 0 (mod pn),

◦ αn ≡ αn+1 (mod pn).

We will show that such a choice of integers is possible by induction. Take α2 = α1 + k1p for
some k1 ∈ Zp, then by means of a Taylor expansion:

f(α2) = f(α1) + f ′(α1)k1p+ . . . ≡ f(α1) + f ′(α1)k1p (mod p2).

By condition (a), there exists some x1 ∈ Zp such that f(α1) = x1p, so

f(α2) ≡ 0 (mod p2)

⇔ f(α1) + f ′(α1)k1p ≡ 0 (mod p2)

⇔ x1p+ f ′(α1)k1p ≡ 0 (mod p2)

⇔ x1 + f ′(α1)k1 ≡ 0 (mod p).

Now, using condition (b), that f ′(α1) is invertible, such a choice of k1 is possible. In fact,
adding the constraint that 0 ≤ k1 ≤ p− 1 allows the choice of k1 and consequently α2 to be
unique. A final verification is needed for the rest of the induction to work:

f ′(α2) = f ′(α1) + f ′′(α1)k1p+ . . . ≡ f ′(α1) (mod p),

so f ′(α2) 6≡ 0. Now suppose that we have found α1, α2, α3, . . . , αn with f(αn) = xnp
n for

some xn ∈ Zp and f ′(αn) 6≡ 0 (mod p). Let αn+1 = αn + knp
n for some kn ∈ Zp that we

want to find. Again using the Taylor expansion:

f(αn+1) ≡ 0 (mod pn+1)

⇔ f(αn) + f ′(αn)knp
n ≡ 0 (mod pn+1)

⇔ xnp
n + f ′(αn)knp

n ≡ 0 (mod pn+1)

⇔ xn + f ′(αn)kn ≡ 0 (mod p),

where a unique choice of 0 ≤ kn ≤ p− 1 and αn+1 is possible. Furthermore, f ′(αn+1) 6≡ 0.

We now proceed to checking that the sequence we have constructed is actually a Cauchy
sequence, so that defining α to be its limit makes sense. This is actually clear upon noticing
that if m > n, then

αn ≡ αm (mod pn), (5)
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so

|αm − αn|p ≤
1

pn
.

Writing
α = lim

n→∞
αn,

it remains to check that (i) and (ii) hold. Taking n = 1 and the limit as m → ∞ in (5)
confirms (i). More generally, using the continuity of f(x),

α ≡ αn (mod pn)⇒ f(α) ≡ f(αn) ≡ 0 (mod pn).

Hence

∀n, |f(α)|p ≤
1

pn
⇒ |f(α)|p = 0⇔ f(α) = 0. �

The content of this proof can be applied directly to construct a solution to any polynomial
which has an approximate solution.

Example 3.6. Let f(x) = x2 − 11 ∈ Z7[x] and take α1 = 2. Clearly,

f(α1) = −7 ≡ 0 (mod 7) and f ′(α1) = 4 6≡ 0 (mod 7),

so the conditions of Hensel’s lemma are satisfied.

Using the notation as in the proof of Hensel’s lemma, we also have

x1 = −1⇒ k1 ≡ (4)−1 (mod 7), i.e. k1 = 2⇒ α2 = 16 = 2 + 2 · 7.

We have now that

f(α2) = 245 ≡ 0 (mod 49) and f ′(α2) = 4 6≡ 0 (mod 7),

so
x2 = 5⇒ k2 ≡ −5 · (4)−1 (mod 7), i.e. k2 = 4⇒ α3 = 212 = 2 + 2 · 7 + 4 · 72.

Repeating,
f(α3) = 44933 ≡ 0 (mod 343) and f ′(α3) = 4 6≡ 0 (mod 7),

so
x3 = 131⇒ k3 = 4⇒ α4 = 1584 = 2 + 2 · 7 + 4 · 72 + 4 · 73.

Performing one more iteration,

f(α4) = 2509045 ≡ 0 (mod 2401) and f ′(α4) = 4 6≡ 0 (mod 7),

so
x4 = 1045⇒ k4 = 3⇒ α5 = 8444 = 2 + 2 · 7 + 4 · 72 + 4 · 73 + 3 · 74.

So we are getting closer to approximating α, a solution to f(x), where

α ≡ αn (mod pn). �
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A less obvious consequence of Hensel’s lemma is the following, which will prove useful later
on in the paper.

Corollary 3.7. (i) An element a ∈ Z×2 is a square in Q2 if and only if it’s a quadratic
residue modulo 8.

(ii) For an odd prime p, an element a ∈ Z×p is a square in in Qp if and only if it’s a
quadratic residue modulo p.

Proof. (i) (⇐) The quadratic residues modulo 8 are 1 and 4. As a ∈ Z×2 , clearly we must
have

a ≡ 1 (mod 8)⇒ ∃k ∈ Z2 such that a = 8k + 1.

Consider the equation
f(x) = x2 + x− 2k ∈ Z2[x],

whose roots are the roots of

g(x) = (2x+ 1)2 − (8k + 1) ∈ Z2[x].

As f(0) ≡ 0 (mod 2) and f ′(0) = 1 6≡ 0 (mod 2), we may apply Hensel’s lemma to f(x) to
obtain a root of g(x). We see that a is a square in Z×2 .

(ii) (⇐) Let a ∈ Z×p be a quadratic residue modulo p. Then,

∃b ∈ Z/pZ such that 1 ≡ a ≡ b2 (mod p).

Writing,
f(x) = x2 − a ∈ Zp[x],

we have that f(b) ≡ 0 (mod p) and f ′(b) ≡ 2b 6≡ 0 (mod p), so Hensel’s lemma applies and
a root of f(x) exists in Zp, i.e. a is a square in Zp �

Example 3.8. 17 is a square in Z2. �

Example 3.9. As 62 ≡ 34 ≡ 2 (mod 17), 2 is a quadratic residue modulo 17. Therefore, 2
is a square in Z17. �

3.1.1 Roots of unity

Another application of Hensel’s lemma concerns roots of unity. We know that the only roots
of unity lying in Q, or even R, are +1 and −1. Can we classify all roots of unity lying in
Qp?

Finding m-th roots of unity is precisely the task of finding roots of

f(x) = xm − 1.
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A first observation is that p-adic roots of unity are necessarily units in the p-adic integers.
Suppose that ζ ∈ Qp is an m-th root of unity, there exists some k ∈ Z such that

|ζ|p =
1

pk
,

thus we can conclude:

|1|p = |ζm|p = |ζ|mp =
1

pkm
⇒ k = 0⇒ ζ ∈ Z×p .

Corollary 3.10. For odd p, Zp contains exactly p − 1 distinct (p − 1)th roots of unity.
Furthermore, they are distinct modulo p.

Proof. The equation
f(x) = xp−1 − 1 ∈ Qp[x]

has at most p− 1 roots in Qp, as it is a field. Let 1 ≤ a ≤ p− 1 be an integer, by Fermat’s
little theorem, it’s true that

f(a) ≡ 0 (mod p) and f ′(a) = (p− 1)ap−2 6≡ 0 (mod p),

so Hensel’s lemma tells us that there’s a root of f(x) in Zp which is congruent to a modulo
p. We therefore obtain distinct roots of f(x) for each a, i.e. there are exactly p−1 roots. �

Remark. We will see the corresponding result for p = 2 later on.

Recall that,

Definition 3.11. A primitive m-th root of unity is ζ such that m is the smallest non-zero
natural number for which

ζm = 1.

The harder problem of finding these primitive m-th roots of unity is closely related to what
is called the m-th cyclotomic polynomial, Φm(x).

Definition 3.12. The mth cyclotomic polynomial, Φm(x), is the unique, irreducible, monic
polynomial whose roots are exactly the m-th primitive roots of unity.

Notice that this gives rise to the following key relation:

xn − 1 =
∏
m|n

Φm(x). (6)

Proposition 3.13. For any prime p and m ∈ Z≥0 not divisible by p, there exists a primitive
m-th root of unity in Qp if and only if m divides p− 1.
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Proof. (⇒) Suppose that m - p − 1 and that a primitive m-th root of unity in Qp exists,
i.e. ∃α ∈ Qp such that Φm(x) ∈ Zp[x] is satisfied (in fact, by our earlier discussion α ∈ Z×p ).
Then ᾱ ∈ Fp is a root of Φ̄m(x) ∈ Fp[x], so ᾱ is a primitive m-th root of unity in Fp. This is
equivalent to ᾱ having order m in F×p , but m - p− 1 so this is impossible. Thus there cannot
be a primitive m-th root of unity in Qp.
(⇐) It is a well-known fact that F×p is a cyclic group of order p− 1, thus there exists some
a ∈ F×p , of order p− 1 such that

〈a〉 = F×p .

As m|p − 1, we have that ᾱ = a
p−1
m ∈ F×p is of order m, thus is a root of Φ̄m(x) ∈ Fp[x].

Using (6), we may write

xm − 1 = Φm(x)Q(x), where Q(x) :=
∏
m|n
m6=n

Φm(x).

By reducing modulo p, differentiating and evaluating at ᾱ, we obtain

mᾱm−1 = Φ̄′m(ᾱ)Q̄(ᾱ) + Φ̄m(ᾱ)Q̄′(ᾱ).

Additionally, using that Φ̄m(ᾱ) = 0 and Q(ᾱ) 6= 0, it is clear that ᾱ is not a root of
Φ̄′m(x) ∈ Fp[x]. The conditions of Hensel’s lemma are therefore met, so we obtain a root of
Φm(x) in Zp, i.e. a primitive m-th root of unity in Qp. �

3.2 Local and global

The problem of finding the roots of a given polynomial in Q is a notoriously hard one. Notice
that if a polynomial has a root in Q, i.e. a ‘global’ solution, then for all p ≤ ∞, it must have
a root in Qp, i.e. a ‘local’ solution. Equivalently, if there exists a p ≤ ∞ such that a given
polynomial has no roots in Qp, then the polynomial cannot have roots in Q.

Example 3.14. Consider the polynomial

3x2 + 2y2 − z2 = 0.

By the following argument, this has no non-trivial solution in Q3. On the contrary, suppose
that (x0, y0, z0) is a non-trivial solution in Q3, without loss of generality we may assume
that y0, z0 ∈ Z×3 . Thus,

3x0
2 + 2y0

2 − z02 ≡ 0 (mod 3)⇒ 2y0
2 ≡ z0

2 (mod 3)⇒ 2 ≡
(
z0
y0

)2

(mod 3),

using that y0
2 has invertible image in F3. However, 2 is not a quadratic residue module 3.

From this, we may conclude that there are no non-trivial rational solutions to the polynomial.
�

A situation in which the converse holds, and local implies global, is the following:
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Proposition 3.15. a ∈ Q is a square if and only if a ∈ Qp is a square for all p ≤ ∞.

Proof. (⇒) This is trivial as for all p ≤ ∞, Q ⊆ Qp.
(⇐) Suppose that a ∈ Qp is a square for all p ≤ ∞. When p = ∞ this is precisely the
statement that a is non-negative. Notice that for p < ∞ and any non-negative a ∈ Qp, we
may write

a =
∏
p<∞

pordp(a).

So such an a being a square in Qp for all p <∞ is the statement that ordp(a) is even for all
p <∞. Clearly, a ∈ Q is a square. �

Ideally we’d like to say that this converse holds all the time, but this is not the case. The
following provides a counterexample.

Example 3.16. The equation

(x2 − 2)(x2 − 17)(x2 − 34) = 0

clearly has no roots in Q. We will show that is does however have roots in Qp for all p ≤ ∞.

The statement is clear for p =∞ so we’ll restrict to the case where p <∞.

By Corollary 3.7, Example 3.8 and Example 3.9, the equation has roots in both Q2 and Q17.

When p 6= 2, 17, all of 2, 17 and 34 are p-adic units and moreover, one of them is always a
quadratic residue modulo p. So again we obtain a root of the equation in Qp. �

What we can say with more certainty is that the existence or non-existence of global solutions
can be detected by studying, for each p ≤ ∞, the local solutions. A hugely successful
application of this principle is the following:

Theorem 3.17 (Hasse–Minkowski). Let f(x1, . . . , xn) ∈ Q[x1, . . . , xn] be a homogenous
polynomial of degree 2. The equation

f(x1, . . . , xn) = 0

has non-trivial solutions in Q if and only if it has non-trivial solutions in Qp for all p ≤ ∞.

We shall not provide a proof of this theorem here, instead see [6], but we shall discuss a
direct application.

3.2.1 Finding the rational roots of ax2 + by2 + cz2

To be precise, we are considering

ax2 + by2 + cz2 ∈ Q[x, y, z].

However, without loss of generality there are some additional assumptions we can make
regarding the coefficients a, b, c.
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◦ Clearly, we can take the coefficients to be non-zero, if any one of the coefficients is 0,
there are countably many non-trivial rational solutions (x0, y0, z0).

◦ By ‘clearing denominators’ of the coefficients, we may also assume that a, b, c ∈ Z.

◦ We may also assume that each coefficient is ‘square-free’, i.e. a product of distinct
prime factors. In the case that a coefficient is not square free, it’s square factors can
be absorbed into it’s corresponding unknown variable.

◦ Finally, we may assume that there is no common factor of all coefficients. Further,
we may assume that the coefficients are pairwise coprime: suppose not, i.e that the
highest common factor of a pair is λ, multiplying the whole equation by λ we may then
absorb this factor into the unknowns corresponding to the coefficients, by repeating
this the result follows. Note that this is the same as saying that the product abc is also
square-free.

Example 3.18. A trivial case to consider is when a = b = c = 1, i.e. solving the equation

x2 + y2 + z2 = 0.

Clearly the only solution to this in R is x = y = z = 0, hence there are no non-trivial
solutions in Q. �

Under some circumstances we may be able to apply a number theoretic argument to determ-
ine if non-trivial solutions exist.

Example 3.19. Consider the polynomial x2 − 5y2 − 3z2 = 0. Reducing modulo 3,

x2 − 5y2 ≡ 0 (mod 3)⇒ x2 ≡ 2y2 (mod 3),

thus x ≡ y ≡ 0 (mod 3). Further,

x2 ≡ y2 ≡ 0 (mod 9)⇒ z ≡ 0 (mod 3)⇒ x2 − 5y2 ≡ 0 (mod 27).

Repeating, we obtain that x and y are both divisible by arbitrarily large powers of 3 and must
therefore be 0. This structure of argument is called ‘Fermat’s method of infinite descent’. �

The Hasse-Minkowski theorem provides a more consistent method for determining whether
ax2 + by2 + cz2 has non-trivial solutions in Q. This gives rise to the next major theorem.

Theorem 3.20. Let a, b, c be pairwise coprime, square-free, integers. The equation

ax2 + by2 + cz2 = 0

has non-trivial solutions in Q, if and only if the following conditions are satisfied:

(i) a, b, c are not all positive or negative.

(ii) for each odd prime p dividing a, − b
c

is a quadratic residue modulo p and similarly for
the odd primes dividing b and c.
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(iii) if a, b, c are all odd, then there are two of them whose sum is divisible by 4.

(iv) if a is even, then either b+ c or a+ b+ c is divisible by 8 and similarly if b or c is even.

We will work towards proving that the conditions of Theorem 3.20 being met are necessary
to guarantee the existence of a non-trivial rational solution. For the proof in the opposite
direction, see [1, Section 3.5] for some justification.

The conditions appearing at each prime p come from the following, to which we apply Hasse–
Minkowski and obtain Theorem 3.20:

Theorem 3.21. Let a, b, c be pairwise coprime, square-free, integers. The equation

ax2 + by2 + cz2 = 0

has non-trivial solutions in Qp when:

(i) p =∞, if and only if a, b, c are not all positive or negative.

(ii) p is odd and p does not divide a, b, c.

(iii) p is odd and p dividing a, if and only if − b
c

is a quadratic residue modulo p, similarly
for p dividing b and c.

(iv) p is even and a, b, c are all odd, if and only if either a+ b, b+ c or a+ c is divisible by
4.

(v) p is even and a is even, if and only if either b+ c or a+ b+ c is divisible by 8, similarly
if b or c is even.

A crucial ingredient to proving this is a slightly different formulation of Hensel’s lemma,
which can be applied to polynomials in multiple variables.

Lemma 3.22 (Hensel’s lemma in three variables, [7, Page 451]). Let f(x1, x2, x3) ∈ Zp[x1, x2, x3]
and suppose that there exists some (α1, α2, α3) ∈ Z3

p such that there exists n ≥ 0 satisfying
the following:

(a) f(α1, α2, α3) ≡ 0 (mod p2n+1),

(b) for some i, ∂f
∂xi

(α1, α2, α3) ≡ 0 (mod pn) and ∂f
∂xi

(α1, α2, α3) 6≡ 0 (mod pn+1).

Then there exists some unique (β1, β2, β3) ∈ Z3
p such that:

(i) for all i, αi ≡ βi (mod pn+1),

(ii) f(β1, β2, β3) = 0.

Returning now to Theorem 3.21:
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Proof. (⇐) (i) This is immediate.

(ii) Suppose that p is odd, dividing none of a, b, c. We claim that there is always a non-trivial
integer solution (x0, y0, z0) modulo p, moreover, we can assume that 0 ≤ x0, y0, z0 ≤ p− 1
and that not all are divisible by p. Our goal is to count the number, N , of the p3 triples
(x0, y0, z0), which do not provide a solution modulo p. Notice that by Fermat’s little theorem:

(ax20 + by20 + cz20)p−1 ≡

{
1 (mod p), if (x0, y0, z0) is not a solution modulo p

0 (mod p), if (x0, y0, z0) is a solution modulo p,

thus we may write

N ≡
p−1∑

x0, y0, z0=1

(ax20 + by20 + cz20)p−1 (mod p)

≡
∑

i+j+k=p−1

µi, j, k

p−1∑
x0=0

x2i0

p−1∑
y0=0

y2j0

p−1∑
z0=0

z2k0 (mod p)

where

µi, j, k =
(p− 1)!

i!j!k!
aibjck.

Without loss of generality, we may assume that 2k < p− 1 and henceforth claim that

p−1∑
z0=0

z2k0 ≡ 0 (mod p).

To justify this claim, we suppose that 2k > 0, else the statement is trivial. Let g ∈ Fp be a
primitive root, so that g2k 6≡ 1 (mod p). As primitive roots are invertible,

{0, 1, 2, . . . , p− 1} = {0, g, 2g, . . . , (p− 1)g},

from which we conclude

p−1∑
z0=0

z2k0 ≡ g2i
p−1∑
z0=0

z2k0 (mod p)⇒
p−1∑
z0=0

z2k0 ≡ 0 (mod p).

It now clearly follows that the number of non-solutions to the polynomial modulo p is di-
visible by p, thus so is the number of solutions. Finally, the existence of the trivial solution
then guarantees the existence of a non-trivial solution. Given such a solution, there clearly
exists some variable with respect to which the partial derivative evaluated at (x0, y0, z0) is
non-zero modulo p, so Lemma 3.22 holds with n = 0 and a solution of f in Qp exists.

(iii) Suppose that p is odd and does divide one of a, b, c, without loss of generality, assume
this to be a. It is key here to notice that

−b
c

is a quadratic residue modulo p⇔ ∃r ∈ Z such that b+ cr2 ≡ 0 (mod p).
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This suggests a candidate for a solution of f modulo p: let (α1, α2, α3) = (1, 1, r) and n = 0.
Clearly,

f(1, 1, r) = a+ b+ cr2 ≡ 0 (mod p) and
∂f

∂y
(1, 1, r) = 2b 6≡ 0 (mod p).

So by Lemma 3.22 we obtain a solution of f in Qp.

(iv) Suppose that p = 2 and all of a, b, c are odd, without loss of generality, suppose
too that b + c is divisible by 4. Here there are two separate cases to consider. First, let
b+ c ≡ 0 (mod 8), (α1, α2, α3) = (4, 1, 1) and n = 1. Clearly,

f(4, 1, 1) = 16a+ b+ c ≡ 0 (mod 8) and
∂f

∂y
(4, 1, 1) = 2b ≡ 0 (mod 2)

6≡ 0 (mod 4)

(similarly for the partial derivative with respect to z), so a solution of f in Q2 exists by
Lemma 3.22. Next, let b + c ≡ 4 (mod 8), (α1, α2, α3) = (2, 1, 1) and n = 1. In this case,
we have that,

f(2, 1, 1) = 4a+ b+ c ≡ 0 (mod 8) and
∂f

∂y
(2, 1, 1) = 2b ≡ 0 (mod 2)

6≡ 0 (mod 4)

(similarly for the partial derivative with respect to z), so again a solution of f in Q2 exists
by Lemma 3.22.

(v) Suppose that p = 2 and one of a, b, c is even, without loss of generality, assume this to be
a. Again there are two separate cases: when b+ c ≡ 0 (mod 8) take (α1, α2, α3) = (2, 1, 1)
and n = 1; when a + b + c ≡ 0 (mod 8), take (α1, α2, α3) = (1, 1, 1) and n = 1. The
argument follows identically to that of (iv), providing a solution in Q2. �

To summarise, what we have just proved explains the conditions of Theorem 3.21, and proves
that there are solutions in Q only if the conditions of Theorem 3.20 are satisfied. A proof
of the conditions of Theorem 3.20 being sufficient to produce a non-trivial rational solution
has been omitted, but [1, Section 3.5] provides some justification.

We conclude this section with one final example.

Example 3.23. Consider the polynomial

3x2 + 5y2 − 7z2 = 0.

We will check whether the conditions of Theorem 3.21 are met to determine exactly for
which p a non-trivial solution in Qp exists. We will then be able to determine if a non-trivial
rational solution exists. For clarity, we write a = 3, b = 5 and c = −7.
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It is immediate that (i) holds, i.e. there is a non-trivial solution in Q∞ = R.

Condition (ii) tells us that for odd p - 3 · 5 · 7 = 105, a non-trivial solution in Qp can always
be found.

Looking next at condition (iii), the only odd primes dividing a, b, c are 3, 5, 7 respectively.
As there is no solution in F3 to

5− 7r2 ≡ 0 (mod 3),

we see that 5
7

is not a quadratic residue modulo 3, thus there is no non-trivial solution in
Q3. By the same argument, neither is −3

5
modulo 7 and so there is no non-trivial solution

in Q7. However, as
−7 + 3 · 22 ≡ 0 (mod 5),

we do have that 7
3

is a quadratic residue modulo 5, i.e. a non-trivial solution in Q5 does
exist, but this alone is not sufficient for (ii) of Theorem 3.20 to be satisfied. We now know
enough to conclude that the polynomial has no non-trivial rational solutions.

Despite this, as a, b, c are all odd, we proceed to look at condition (iv) of Theorem 3.21.
Upon noticing that a + b = 8 is divisible by 4, this final condition is met and so there is a
non-trivial solution in Q2. �
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4 Analysis in Qp and its applications

We conclude this paper with some analytic arguments. Specifically, we look at a group
isomorphism arising from p-adic power series, referring once again to Gouvea [1].

4.1 Series

We begin this section with the discussion of series: recall, an infinite series over some metric
space (X, d) is an expression of the form

∞∑
n=0

an, for an ∈ X.

Such a series is said to be convergent in X if and only if for some l ∈ X, the partial sums

Sk =
k∑

n=0

an → l, as k →∞.

Proposition 4.1. In a non-Archimedean, complete normed space (X, || · ||),

∞∑
n=0

an converges ⇔ lim
n→∞

||an|| = 0.

Proof. (⇒) Suppose that
∑∞

n=0 an converges, i.e. that Sk → l as k → ∞ for some l ∈ X.
Clearly it is also true that Sk−1 → l as k →∞ and by the triangle inequality

||ak|| = ||Sk − Sk−1|| ≤ ||Sk − l||+ ||Sk+1 − l|| → 0 as k →∞.

(⇐) Suppose that ||an|| → 0 as n→∞ and fix k, m ∈ N such that k > m.

||Sk − Sm|| = ||
k∑

n=m+1

an|| ≤ max{||an||}kn=m+1

using the non-Archimedean property, and taking the limit of the right hand side as both
k, m→∞ we obtain that Sn defines a Cauchy sequence. As the space we are working in is
complete, Sn converges to some limit. �

Remark. The right implication holds in a general Archimedean metric space too.

A special type of series is a power series, i.e. one of the form

∞∑
n=0

anx
n.

The values of x for which a power series converges is of great interest in analysis, and we
summarise such values by defining the radius of convergence:

35



Definition 4.2. The radius of convergence is defined to be some r ∈ R≥0 ∪ {∞} such that
the power series

∞∑
n=0

anx
n

converges for ||x|| < r and diverges for ||x|| > r.

Analogously to the Archimedean case, the radius of convergence can be defined explicitly by
the formula

r =
1

limn→∞ sup n
√
||an||

.

We will now revert our attention to working over Qp, where we observe that the radius of
convergence will be a power of p.

The natural logarithm is defined as

log(1 + x) =
∞∑
n=1

(−1)n−1

n
xn

and can be considered as being defined on R or Qp. On the former, with respect to the
Euclidean norm, the radius of convergence is well known as being 1. For clarity, we’ll write
logp for the power series on Qp, and shall proceed to determine its radius of convergence, rp.

As rp is a power of p, an equivalent problem is finding

ordp(rp) = − lim
n→∞

inf
ordp(an)

n

= lim
n→∞

inf
ordp(n)

n
= 0,

having used that

ordp(an) = ordp

(
(−1)n−1

n

)
= −ordp(n).

So the radius of convergence is
rp = pordp(rp) = 1,

i.e. convergence occurs on the open unit disc about 1, with respect to | · |p. This is same as
saying that logp converges on 1 + pZp.

Over R, a close companion to the natural logarithm is its inverse, the exponential, defined
as

exp(x) =
∞∑
n=0

xn

n!
,
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whose radius of convergence is ∞. Considering this over Qp, we denote it as expp whose
radius of convergence is a lot less obvious. We argue as above:

ordp(rp) = − lim
n→∞

inf
ordp(an)

n

= − lim
n→∞

inf
n− sp(n)

n(p− 1)

= − 1

p− 1
,

having used Lemma 1.16 to obtain that

ordp(an) = ordp

(
1

n!

)
=
n− sp(n)

p− 1
.

So
rp = pordp(rp) = p−

1
p−1 .

As this value is dependent on p we will further consider this case-by-case.

◦ When p = 2, we have that r2 = 1
2
, i.e. exp2(x) converges when |x|2 < 1

2
or |x|2 ≤ 1

4
.

This is the same as saying that exp2 converges on 4Z2.

◦ When p is odd, it holds that

1

p− 1
< 1⇒ 1

p
<

1

p
1

p−1

.

This tells us that expp(x) converges when |x|2 < 1
p
, or expp converges on pZp. This is

different to that of above.

We can summarise the above discussion more concisely upon introducing the parameter

q =

{
4, p = 2,

p, p odd,

i.e. we have shown that expp converges on qZp. Although we know that logp converges on
1+pZp, from here on we restrict the domain of this function to 1+ qZp to obtain the desired
results.

The next step in our analysis is to determine the image of these convergent functions.

We’ll consider first the p-adic logarithm, and let 1 + x lie in it’s domain, i.e. |x|p ≤ 1
q

or

ordp(x) > 1
p−1 . For n = 1, 2, . . . the estimate

ordp

(
(−1)n−1

n
xn
)
− ordp(x) = (n− 1)ordp(x)− ordp(n)

> (n− 1)

(
1

p− 1
− ordp(n)

n− 1

)
≥ 0,
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gives rise to the corresponding result regarding the norm, i.e. for n = 1, 2, . . .∣∣∣∣(−1)n−1

n
xn
∣∣∣∣
p

< |x|p.

Hence, using the non-Archimedean property of the norm

| logp(1 + x)|p =

∣∣∣∣∣
∞∑
n=1

(−1)n−1

n
xn

∣∣∣∣∣
p

≤ max
n=1, 2, ...

∣∣∣∣(−1)n−1

n
xn
∣∣∣∣
p

< |x|p,

so logp(1 + x) ∈ qZp.

Now, considering the exponential: let x lie in its domain so that |x|p ≤ 1
q
. Checking case-

by-case, i.e. for even and odd p, it holds that

| expp(x)− 1|p =

∣∣∣∣∣
∞∑
n=1

xn

n!

∣∣∣∣∣
p

≤ max
n=1, 2, ...

∣∣∣∣xnn!

∣∣∣∣
p

< 1.

So, expp(x) ∈ 1 + qZp.

Additionally, closure of each of the domains follows noting that

|(1 + x)(1 + y)− 1|p = |x+ y + xy|p ≤ max{|x|p, |y|p, |x|p|y|p},

so if 1 + x, 1 + y are in the domain of the logarithm, then so is (1 + x)(1 + y) and

|xy|p = |x|p|y|p,

so if x, y are in the domain of the exponential, then so is xy. Thus by the usual power series
arguments,

logp((1 + x)(1 + y)) = logp(1 + x) + logp(1 + y), and

expp(x+ y) = expp(x) expp(y).

To summarise, we have established two homomorphisms given by

logp : 1 + qZp −→ qZp, expp : qZp −→ 1 + qZp.

A natural question is whether these functions still provide inverses to one another in Qp.
Once again, the usual power series analysis confirms that on the domains stated above, the
two compositions provide identity maps.

We have shown that:

Theorem 4.3. For q as defined above,

1 + qZp ∼= qZp,

i.e. the p-adic logarithm and exponential provide a a group isomorphism between the multi-
plicative group 1 + qZp and the additive group qZp.
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Remark. Further to this, there is a clear isomorphism between the additive groups Zp and
pkZp for k ≥ 0. Thus we may note too that

Zp ∼= qZp ∼= 1 + qZp.

Upon having made these observations, we’re now able to formulate the following result
concerning the structure of the unit group of the p-adic integers.

Theorem 4.4.

Z×p ∼=

{
Z2 × Z/2Z, p = 2,

Zp × Z/(p− 1)Z, p odd.

Proof. This argument will rely on the short exact sequence

0 −→ 1 + qZp
f−→ Z×p

g−→ (Z/qZ)× −→ 0,

where f denotes the inclusion map and g the reduction modulo q. If we can construct a
homomorphism h : (Z/qZ)× −→ Z×p such that g ◦h = id(Z/qZ)× , then we have split the short
exact sequence and obtain

Z×p ∼= 1 + qZp × (Z/qZ)×

∼= Zp × (Z/qZ)×.

As q varies with the parity of the prime p, we proceed with a case-by-case approach. First,
let p = 2 so q = 4. Observe that (Z/4Z)× = {1, 3} and ±1 ∈ Z×2 , so Z×2 contains both
2nd roots of unity. This motivates us to define ω : (Z/4Z)× −→ Z×2 so that ω(a) ∈ Z×2
is the unique 2nd root of unity such that ω(a) ≡ a (mod 4). It can be easily shown that
g ◦ ω = id(Z/4Z)× and so it follows that

Z×2 ∼= Z2 × (Z/4Z)× ∼= Z2 × Z/2Z.

Now let p be odd, so that q = p. We find h : (Z/pZ)× −→ Z×p based on the same principle as
before. Utilising Corollary 3.10 of Hensel’s lemma, it’s possible for us to map a ∈ (Z/pZ)× to
the unique (p− 1)th root of unity, ω(a) ∈ Zp such that ω(a) ≡ a (mod p). This construction
again makes it clear that g ◦ ω provides the identity on (Z/pZ)×, thus

Z×p ∼= Zp × (Z/pZ)× ∼= Zp × Z/(p− 1)Z. �

Remark. The homomorphism of multiplicative groups, ω : (Z/qZ)× −→ Z×p , as defined
above is called the Teichmüller character.

Corollary 4.5. The only roots of unity in Q2 are the second roots of unity, ±1.

Proof. As Z2 is torsion-free, the only roots of unity in Z2 × Z/2Z are (±1, 0). �
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4.1.1 Application: quadratic extensions of Qp

A well-known fact is that the quadratic field extensions of Q are given by Q(
√
d) for square-

free d ∈ Z. More generally, it is true that the quadratic extensions of a field K are in bijection
with the quotient

K×/(K×)2.

Thus, classifying the quadratic extensions of Qp is equivalent to understanding the quotient

Q×p /(Q×p )2.

A first observation is that
Q×p ∼= Z×p × 〈p〉,

and so quotienting by the subgroup of squares gives

Q×p /(Q×p )2 ∼= Z×p /(Z×p )2 × 〈p〉/〈p2〉,

i.e. we have reduced the problem to studying Z×p /(Z×p )2. As we saw before, the structure of
Z×p varies with p, so it is necessary to take a case by case approach.

When p = 2, we saw that Z×2 ∼= Z2 × Z/2Z or more explicitly that

Z×2 ∼= (1 + 4Z2)
× × (Z/4Z)×

⇒ Z×2 /(Z×2 )2 ∼= (1 + 4Z2)
×/((1 + 4Z2)

×)2 × (Z/4Z)×/((Z/4Z)×)2.

Choosing representatives of these factors will allow use to formulate a complete list of the
quadratic extensions of Q2. The second factor is easy: an obvious choice for a representative
is −1. The first factor however is significantly harder. We utilise the isomorphism of (1 +
4Z2)

× with the additive group 4Z×2 , to spot that 4 is a representative of the latter quotiented
by its subgroup of squares. So the image of 4 under exp2 is the representative we want.
However, this is not a particularly nice number. If we reduce modulo 4, we get 1 which is
clearly a square. Instead, notice that

exp2(4) = 1 + 4 +
42

2!
+

43

3!
+ . . . ≡ −3 (mod 8),

we may take this to be our representative as -3 is not a square. Now, from the expression

Q×2 /(Q×2 )2 ∼= (1 + 4Z2)
×/((1 + 4Z2)

×)2 × (Z/4Z)×/((Z/4Z)×)2 × 〈2〉/〈4〉

we see that the set of representatives will be of order 8, given by -3, -1, 2 and multiples
thereof. Hence, there are 7 quadratic field extensions, being

Q2(
√
−3), Q2(

√
−1), Q2(

√
2), Q2(

√
3), Q2(

√
−6), Q2(

√
−2), and Q2(

√
6).

Now let p be an odd prime. Here we have the isomorphism

Z×p ∼= Zp × Z/(p− 1)Z ∼= Zp × F×p .
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Thus the quotient is question is merely,

Z×p /(Z×p )2 ∼= F×p /(F×p )2 ⇒ Q×p /(Q×p )2 ∼= F×p /(F×p )2 × 〈p〉/〈p2〉.

From this, it is clear that the set of representatives will be of order 4 and given by {1, n, p, np}
where n is a non-quadratic residue modulo p. Hence, there are 3 quadratic field extensions:

Qp(
√
n), Qp(

√
p), and Qp(

√
np).

Example 4.6. Let p ≡ 3 (mod 4). The first supplement to the law of quadratic reciprocity
suggests an obvious choice for n, i.e. n = −1. Thus the quadratic field extensions are

Qp(
√
−1), Qp(

√
p), and Qp(

√
−p). �

Example 4.7. Let p ≡ 1 (mod 4). Additionally, when p ≡ 5 (mod 8), the second supple-
ment to the law of quadratic reciprocity suggests n = 2. Thus the quadratic field extensions
are

Qp(
√

2), Qp(
√
p), and Qp(

√
2p).

But what about when p ≡ 1 (mod 8)? Determining that there is no such n which works for
all p is a finite problem. The smallest p of this kind is 17, whose non-quadratic residues
are {3, 5, 6, 7, 10, 11, 12, 14}. For each number in this list, a prime q ≡ 1 (mod 8) can be
found with respect to which the number is a quadratic residue, hence confirming the claim.
For instance, 10 ≡ 162 ≡ 1 (mod 41). �

4.2 The Bernoulli numbers and p-adic analyticity

Advancing from the discussion of series in Qp, we now discuss what it means for a function
to be p-adically analytic. This subsection summarises some of Washington’s work in [8].

First, we introduce the Bernoulli numbers which are objects of analysis that can be defined
in various ways, two of which we will make use of:

Definition 4.8. The Bernoulli numbers Bn satisfy,

t

et − 1
=
∞∑
n=0

Bnt
n

n!

i.e. they appear in the exponential generating function.

Definition 4.9. Recursively, for m ≥ 0

Bn = δn,0 −
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
.

In practice, the second definition is easier to work with and we use this to determine the
first few Bernoulli numbers:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, . . .

Observe that:
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Proposition 4.10. For odd n ≥ 3, Bn = 0.

Proof. Notice that we may write

∞∑
n=0

Bnt
n

n!
=

t

et − 1
=
t

2
· (et + 1)− (et − 1)

et − 1
.

Thus,

1 +
∞∑
n=2

Bnt
n

n!
=
t

2
· (et + 1)

et − 1
,

where the latter is an even function. �

We also begin to see the following which shall be justified later on:

Proposition 4.11. For n 6= 0, Bn ≤ 0⇔ 4|n.

But why do we call these numbers objects of analysis?

Example 4.12. The Bernoulli numbers appear in the Taylor series expansions of the tangent
and hyperbolic tangent functions:

tan(x) =
∞∑
n=1

(−1)n−122n(22n − 1)B2nx
2n−1

(2n)!
,

tanh(x) =
∞∑
n=1

22n(22n − 1)B2nx
2n−1

(2n)!
,

for |x| < π
2
. �

Example 4.13. The Bernoulli numbers appear in the expression for the sum of powers of
the first positive integers. Write

Sm(n) =
n−1∑
k=0

km.

Noting the power series expansion of the exponential,

ekx =
∞∑
m=0

km
xm

m!

and summing these functions for k = 0, 1, . . . n− 1, we obtain

∞∑
m=0

Sm(n)
xm

m!
=

n−1∑
k=0

ekx =
enx − 1

ex − 1
=
∞∑
k=1

nk
xk−1

k!

∞∑
m=0

Bmt
m

m!
,

where the last equality uses the generating function definition of Bn. Comparing coefficients
of the powers of x gives the desired result that

Sm(n) =
m∑
k=0

(
m

k

)
Bm−k

nk+1

k + 1
. �
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Lemma 4.14. For n ≥ 0, pBn ∈ Zp. Moreover, if n ≥ 2 is even then

pBn ≡ Sn(p) (mod p).

Proof. We prove the first statement by induction. First notice, pB0 = p which is certainly a
p-adic integer. The formula established in the above example gives that

pBn = Sn(p)−
n∑
k=1

(
n

k

)
pBn−k

pk

k + 1
.

Let’s assume that pB0, pB1, . . . , pBn−1 ∈ Zp. As Sn(p) ∈ Z and for k = 1, 2, . . . n,
(
n
k

)
∈ Z,

it follows that pBn ∈ Zp upon noticing that k + 1 ≤ pk ⇒ pk

k+1
∈ Zp for k ≥ 1. The stronger

statement that k + 1 < pk for k ≥ 2 implies that

pBn ≡ Sn(p)− npBn−1
p

2
(mod p).

So when n ≥ 1 is even we obtain the desired result. �

Lemma 4.15.

Sn(p) ≡

{
0 (mod p) p− 1 - n,
−1 (mod p) p− 1 | n.

Proof. Let g be a primitive root modulo p. Then

{1, 2, . . . , p− 1} = {1, g, . . . , gp−2},

so
Sn(p) ≡ 0n + 1n + gn + . . .+ gn(p−2) (mod p).

Thus we may determine that

(gn − 1)Sn(p) ≡ 0n + gn + g2n + . . .+ gn(p−1) − (0n + 1n + gn + . . .+ gn(p−2))

≡ gn(p−1) − 1 ≡ 0 (mod p).

Now, if p− 1 - n, then gn − 1 6≡ 0 (mod p), so Sn(p) ≡ 0 (mod p). If instead p− 1 | n, then
gn ≡ 1 (mod p)⇒ Sn(p) ≡ p− 1 (mod p). �

These preliminary results (from [9]) allow us to prove our first major result concerning the
Bernoulli numbers.

Theorem 4.16 (Von Staudt–Clausen). If n ≥ 2 is even, then

Bn +
∑

(p−1)|n

1

p
∈ Z.
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Proof. Let n ≥ 2 be even and q be a prime. If q − 1 - n, then qBn ≡ 0 (mod q), so Bn ∈ Zq
and clearly it follows that

Bn +
∑

(p−1)|n

1

p
∈ Zq.

If q − 1 | n, then qBn ≡ −1 (mod q). We find too that,

Bn +
∑

(p−1)|n

1

p
∈ Z = Bn +

1

q
+
∑

(p−1)|n
p 6=q

1

p
=
qBn + 1

q
+
∑

(p−1)|n
p 6=q

1

p
∈ Zq.

Therefore, the quantity in question lies in Zq for all primes q, hence it must be in Z. �

The next theorem we will work towards proving is one of Kummer:

Theorem 4.17 (Kummer’s congruences). Let m, n ≥ 1 be even and such that for some a,
m ≡ n (mod (p− 1)pa). If also n 6≡ 0 (mod p− 1), then

(1− pm−1)Bm

m
≡ (1− pn−1)Bn

n
(mod pa+1).

In order to do so, we must work in a much more general setting. The material presented
from here on is based on that of Washington in [8, Sections 3 - 5].

Definition 4.18. A Dirichlet character χ of modulus F is a multiplicative homomorphism

χ : (Z/FZ)× −→ C×.

The conductor of χ, denoted f or fχ, is the minimal possible conductor, i.e. if F |G, then
χ : (Z/GZ)× −→ (Z/FZ)× −→ C× is an induced homomorphism.

Remark. We may extend a Dirichlet character to the whole of Z by defining

χ(a) = 0 if (a, f) 6= 1.

Example 4.19. The Teichmüller character, ω, defined previously is a Dirichlet character of
conductor q. �

Definition 4.20. The Dirichlet L-function is

L(s, χ) :=
∑
n≥1

χ(n)

ns
,

for s ∈ C with Re(s) > 1 and χ a Dirichlet character.

Although the notation here omits the modulus associated to the Dirichlet character, this
value does in fact matter as is seen below.
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Example 4.21. Consider the trivial character with modulus F = 1,

χ : Z −→ C×,
a 7−→ 1.

Here we see that
L(s, χ) = ζ(s),

the usual Riemann Zeta function. �

Example 4.22. Now let F = p, thus

χ : (Z/pZ)× −→ C×,
a 7−→ 1.

Using Euler’s product formula for the Riemann Zeta function, we obtain that

L(s, χ) =
∑
n≥1
p-n

1

ns
= (1− p−s)ζ(s). �

The Riemann Zeta function is closely related to the Bernoulli numbers. In particular, for
integers n ≥ 1:

◦ ζ(1− n) = (−1)n+1Bn

n
,

◦ ζ(2n) = (−1)n+1 (2π)
2nBn

2(2n)!
.

Combining this second identity with the well-known fact that ζ(s) > 0 on the positive real
numbers, we obtain that the sign of B2n alternates, proving Proposition 4.11.

The Kubota-Leopoldt p-adic zeta function, ζp(s), is a one of a p-adic variable which inter-
polates values of ζ(s) at negative integers in the sense that

ζp(1− n) = (1− pn−1)ζ(1− n), for n ≡ 0 (mod p− 1).

The first identity listed above combined with Kummer’s congruences tells us that ζp(s) is
uniformly continuous when restricted to negative integers in a fixed residue class modulo
p− 1.

A slight digression motivates why there is so much interest surrounding this function.

Definition 4.23. A prime p is called irregular if it divides the class number of Q(ξp), the
pth cyclotomic field (obtained by adjoining a primitive pth root of unity ξp to the rational
numbers), and regular if not.

A first application of this notion is in proving Fermat’s last theorem where the exponent
is a regular prime. This proof was accessible in the 19th century, while the full proof was
not established until the 1990s. Another is the following:
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Theorem 4.24 (Kummer’s criterion). A prime p is regular if and only if p does not divide
the numerator of any Bn for n = 2, 3, . . . , p− 3.

Example 4.25. 37 is irregular: the numerator of B32 is −7709321041217 = 37 × 683 ×
305065927. In fact, 37 can be shown to be the least irregular prime. �

Using this fact, it holds that the smallest p for which there exists s ∈ Z×p with ζp(s) = 0
is p = 37.

Definition 4.26. The generalized Bernoulli numbers are defined by

f∑
a=1

χ(a)teat

eft − 1
=
∞∑
n=0

Bn,χt
n

n!
,

where χ is a Dirichlet character with conductor f .

Returning to the standard Bernoulli numbers we also define:

Definition 4.27. The Bernoulli polynomials for n ≥ 0 satisfy,

text

et − 1
=
∞∑
n=0

Bn(x)tn

n!
,

or explicitly are defined as

Bn(x) =
n∑
k=0

(
n

k

)
(Bk)x

n−k.

Remark. Note that Bn(0) = Bn.

From here on the notation Bn(x) will be used for the n-th Bernoulli polynomial evaluated
at x and (Bn)(x) will denote the n-th Bernoulli number multiplied by x.

Proposition 4.28.

Bn,χ = fn−1
f∑
a=1

χ(a)Bn

(
a

f

)
Proof. Multiplying the right-hand side by tn

n!
and summing over n we obtain

∞∑
n=0

fn−1
f∑
a=1

χ(a)Bn

(
a

f

)
tn

n!
=

f∑
a=1

χ(a)
1

f

∞∑
n=0

Bn

(
a

f

)
(ft)n

n!

=

f∑
a=1

χ(a)teat

eft − 1

=
∞∑
n=0

Bn,χt
n

n!
,

and so the result follows. �
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Example 4.29. Let χ be the trivial Dirichlet character with conductor 1, then

Bn,1 = Bn(1) =
n∑
k=0

(
n

k

)
Bk.

Clearly, B0,1 = 1 and B1,1 = 1
2
. We claim that for n > 1, Bn,1 = Bn and proceed to prove

this by induction.

When n = 2, clearly we have that B2,1 = B2 = 1
6
. Now suppose the hypothesis is true, and

consider the following:

n+1∑
k=0

(
n+ 1

k

)
Bk =

n∑
k=0

(
n+ 1

k

)
Bk +Bn+1

= (n+ 1)
n∑
k=0

(
n

k

)
Bk

n+ 1− k
+Bn+1

= (n+ 1)
n−1∑
k=0

(
n

k

)
Bk

n+ 1− k
+Bn+1 + (n+ 1)Bn

= −(n+ 1)Bn +Bn+1 + (n+ 1)Bn = Bn+1.

Thus we are done. �

We now take the opportunity to set up the appropriate field in which the remaining discussion
will take place. As usual, let Qp denote the algebraic closure of Qp.

Theorem 4.30. Qp is not complete.

Studying analysis in a complete field is of great convenience to us, so we let Cp denote the
completion of Qp with respect to | · |p.

Theorem 4.31. Cp is algebraically closed.

The proof of the Kummer congruences will revolve around the following function of a complex
variable s ∈ Cp and a Dirichlet character χ of conductor f :

Lp(s, χ) =
F∑
a=1
p-a

χ(a)Hp(s, a, F ),

where F is a multiple of f and q and

Hp(s, a, F ) =
1

s− 1

1

F
{ω(a)−1a}1−s

∞∑
j=0

(
1− s
j

)
(Bj)

(
F

a

)j
.

From here on we restrict our attention to the case where p is odd for simplicity of notation,
i.e. q = p. When p = 2 and q = 4, the argument will follow very similarly.
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Proposition 4.32. Hp(s, a, F ) is analytic except for a simple pole at s = 1.

To prove this we require a stronger result than that of Mahler which says “any continuous
function

f : Zp −→ Qp

may be written uniquely as

f(x) =
∞∑
n=0

an

(
x

n

)
,

with an → 0 as n→∞.”

Theorem 4.33. Let r < p−
1

p−1 and

f(x) =
∞∑
n=0

an

(
x

n

)
.

If there exists some M > 0 such that |an| ≤Mrn for all n, then f is analytic with radius of

convergence at least (rp
1

p−1 )−1.

Remark. Notice that (rp
1

p−1 )−1 > 1 so f is analytic on Zp.

We can now prove Proposition 4.32:

Proof. First consider the sum

∞∑
j=0

(
s

j

)
(Bj)

(
F

a

)j
, i.e. aj = (Bj)

(
F

a

)j
in the notation of Theorem 4.33. As we have taken F to be a multiple of p, and 0 < a < F
to be such that p - a, it holds that

|aj|p ≤ |(Bj)|p ·
1

pj
≤ p · 1

pj
,

where the last inequality follows from Lemma 4.14. We apply Theorem 4.33 with the para-
meters r = 1

p
and M = p to obtain that the series above is analytic on D = {s ∈ Cp | |s| <

p
p−2
p−1}. Notice that as p

p−2
p−1 > 1, we have too that D = {s ∈ Cp | |1 − s| < p

p−2
p−1}, hence

analyticity of
∞∑
j=0

(
1− s
j

)
(Bj)

(
F

a

)j
.

The remaining term to consider is

{ω(a)−1a}s =
∞∑
j=0

(
s

j

)
(ω(a)−1a− 1)j, i.e. aj = (ω(a)−1a− 1)j.
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We have

ω(a) ≡ a (mod p)⇒ ω(a)−1a ≡ 1 (mod p)⇒ |aj|p ≤
1

pj
,

so again applying Theorem 4.33 this time with r = 1
p

and M = 1 we obtain that this series

in analytic on D, and correspondingly that {ω(a)−1a}1−s is analytic on D. The definition of
Hp(s, a, F ) as a product of these series makes it clear that it is analytic with a simple pole
at s = 1. �

Corollary 4.34. When χ is non-trivial, Lp(s, χ) is analytic.

Proposition 4.35. For n ≥ 1,

Hp(1− n, a, F ) = −ω
−n(a)F n−1

n
Bn

( a
F

)
.

Proof. A simple manipulation using the Bernoulli polynomial gives

Hp(1− n, a, F ) = − 1

nF
{ω(a)−1a}n

n∑
j=0

(
n

j

)
(Bj)

(
F

a

)j
= − 1

nF
{ω(a)−1a}nF

n

an
Bn

( a
F

)
= −ω

−n(a)F n−1

n
Bn

( a
F

)
. �

From now on we will also focus exclusively on χ = ωn for some n ∈ N, so that f = q = p
and we may let F = p.

Corollary 4.36. For n > 1,

Lp(1− n, ωn) = −(1− pn−1)Bn

n
.

Proof. Beginning with the definition,

Lp(1− n, ωn) =

p−1∑
a=1

ωn(a)Hp(1− n, a, p)

= −
p−1∑
a=1

ωn(a)
ω−n(a)pn−1

n
Bn

(
a

p

)
,

= −
p−1∑
a=1

pn−1

n
Bn

(
a

p

)
, as ωn(a)ω−n(a) = ωnω−n(a) = 1

= −Bn,1 − pn−1Bn(1)

n
,

= −(1− pn−1)Bn

n
, as Bn,1 = Bn(1) = Bn for n > 1. �
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A finally necessary result is:

Theorem 4.37. There exists a power series expansion of the form

Lp(s, ω
n) = a0 + a1(s− 1) + a2(s− 2)2 + . . . ,

where |a0| ≤ 1 and for all n ≥ 1, p|an.

Proof. Writing Lp(s, ω
n) as

1

s− 1

p−1∑
a=1

ωn(a)

(
∞∑
j=0

1

j!
(1− s)j logp{ω(a)−1a}j

)(
(1− s) · · · (1− s− (j − 1))

Bj

j!

pj−1

aj

)
,

it makes sense to look at the two bracketed power series in turn. The coefficient of (1− s)j
in the former is clearly

1

j!
logp{ω(a)−1a}j.

When j ≤ 2, ∣∣∣∣ 1

j!
logp{ω(a)−1a}j

∣∣∣∣
p

< p
j

p−1 · 1

pj
=

1

pj p−2
p−1
≤ 1

p

using that logp{ω(a)−1a} ∈ pZp and the remark following Lemma 1.16. Thus, the contribu-
tion of this series left to consider is

1 + (1− s) logp{ω(a)−1a}.

Upon noticing that (1 − s)(1 − s − 1) · · · (1 − s − (j − 1)) is a polynomial in (1 − s) with
integer coefficients of degree j, it is enough to just consider the coefficient

Bj

j!

pj−1

aj
.

Again, when j ≥ 2, ∣∣∣∣xfBj

j!

pj−1

aj

∣∣∣∣
p

< p · p
j

p−1 · 1

pj−1
=

1

pj p−2
p−1
≤ 1

p
,

(this time having also made use of Lemma 4.14), so the contribution of this series left to
consider is

1

p
− 1− s

2a
.

Hence,

Lp(s, ω
n) ≡ 1

s− 1

p−1∑
a=1

ωn(a)(1 + (1− s) logp{ω(a)−1a})
(

1

p
− 1− s

2a

)
(mod p).

50



Firstly,

a0 ≡ −
p−1∑
a=1

ωn(a)

(
logp{ω(a)−1a}

p
− 1

2a

)
(mod p)

⇒ |a0|p ≤ max

{
ωn(a)

(
logp{ω(a)−1a}

p
− 1

2a

)
: a = 1, . . . , p− 1,

1

p

}
.

Clearly p - a ⇒ 1
2a
∈ Zp and along with ωn(a),

logp{ω(a)−1a}
p

∈ Zp for each a, we obtain that

|a0|p ≤ 1. Finally,

a1 ≡
p−1∑
a=1

ωn(a)
logp{ω(a)−1a}

2a
(mod p)

⇒ |a1|p ≤ max

{
ωn(a)

logp{ω(a)−1a}
2a

: a = 1, . . . , p− 1,
1

p

}
.

We estimate

ordp

(
logp{ω(a)−1a}

2a

)
= ordp(logp{ω(a)−1a})− ordp(2a) = ordp(logp{ω(a)−1a}) ≥ 1,

so |a1|p ≤ 1
p
, i.e. p | a1, and we’re done. �

Having established these preliminaries, the proof of Kummer’s theorem follows rather con-
cisely.

Theorem 4.17 (Kummer’s congruences). Let m, n ≥ 1 be even and such that for some a,
m ≡ n (mod (p− 1)pa). If also n 6≡ 0 (mod p− 1), then

(1− pm−1)Bm

m
≡ (1− pn−1)Bn

n
(mod pa+1).

Proof. Using first that m ≡ n (mod (p− 1)pa), the character ωm−n is trivial, i.e. ωm = ωn.
Thus, it holds that

Lp(s, ω
m) = Lp(s, ω

n).

By Theorem 4.37, we may write

Lp(1−m,ωm) = a0 − a1m+ a2m
2 − . . .

≡ a0 − a1n+ a2n
2 − . . . (mod pa+1)

= Lp(1− n, ωn),

where the congruence follows from m ≡ n (mod (p − 1)pa) and p|ai for i ≥ 1. Finally, by
Corollary 4.36, we obtain that

(1− pm−1)Bm

m
≡ (1− pn−1)Bn

n
(mod pa+1). �
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