A new rank parity computing machine

Holly Green

University College London

August 16th, 2022

Theorem (Constantinou, Dokchitser, Green, Morgan)

Assume $\# \coprod$ is finite. For all smooth, projective curves over number fields X/K

$$\mathsf{rank}(\mathsf{Jac}_X/K) \equiv \sum_{\nu} \Lambda(X/K_{\nu}) \mod 2$$

where $\Lambda \in \{0,1\}$ is an explicit invariant computed from curves over local fields.

Work in progress theorem (Dokchitser, Green, Morgan)

Assume $\# \coprod$ is finite. The Birch and Swinnerton-Dyer conjecture correctly predicts the parity of $\operatorname{rank}(\operatorname{Jac}_X/K)$ for all nice hyperelliptic curves over number fields X/K.

Theorem (Green, Maistret: p = 2 and E has CM)

The p-parity conjecture holds for elliptic curves over totally real number fields.

Holly Green (UCL) Mordell 2022 August 16th, 2022

BSD and the parity conjecture

Birch and Swinnerton-Dyer conjecture

$$\mathsf{rank}(\mathsf{Jac}_X) = \mathsf{ord}_{s=1} L(\mathsf{Jac}_X, s)$$

Conjectural functional equation $L^*(\operatorname{Jac}_X, s) = w(\operatorname{Jac}_X)L^*(\operatorname{Jac}_X, 2 - s)$

The Parity Conjecture

Let K be a number field and X/K a curve. Then

$$(-1)^{\mathsf{rank}(\mathsf{Jac}_X/K)} = w(\mathsf{Jac}_X/K) = \prod_{\nu} w(\mathsf{Jac}_X/K_{\nu}).$$

Assuming finiteness of III, this is known for:

- Elliptic curves
- Jacobians of semistable genus 2 curves (+...)
- \blacksquare Jacobians of semistable hyperelliptic curves $(+\ldots)$ over quadratic extensions

Goal

Develop an arithmetic analogue of the local root number $w(Jac_X/K_v)$.

Applications of local formulae

Let E/K be a semistable elliptic curve. Assuming BSD, or finiteness of III,

$$\operatorname{rank}(E/K) \equiv \#\{v \mid \infty\} + \#\{v \nmid \infty, E/K_v \text{ split multiplicative}\} \mod 2.$$

- E/\mathbb{Q} : $y^2 + y = x^3 + x^2$ has split multiplicative reduction nowhere \Rightarrow rank (E/\mathbb{Q}) is odd. Therefore E has a \mathbb{Q} -point of infinite order.
- If E/\mathbb{Q} is semistable with split multiplicative reduction at 2 then $\operatorname{rank}(E/\mathbb{Q}(\zeta_8))$ is odd.

Suppose a local formula exists for X/K, i.e. $\operatorname{rank}(\operatorname{Jac}_X/K) \equiv \sum_{\nu} \Lambda(X/K_{\nu}) \mod 2$.

■ rank $(\operatorname{Jac}_X/\mathbb{Q}(i,\sqrt{17}))$ is even for any curve X/\mathbb{Q} .

Goal

Develop an arithmetic analogue of the parity conjecture which holds independently of BSD.

Ingredient 1 for the parity computing machine: field diagrams

Let X/\mathbb{Q} be a curve and $\pi:X\to\mathbb{P}^1$.

- $\blacksquare (\mathsf{Jac}_Y(\mathbb{Q}) \otimes \mathbb{Q})^H = \mathsf{Jac}_{Y/H}(\mathbb{Q}) \otimes \mathbb{Q}$
- Tate modules
- Selmer groups
- Height pairings

Example

Let $E: y^2 = x^3 + ax^2 + bx$ and $\pi: E \to \mathbb{P}^1$,

$$(x,y)\mapsto x.$$

Ingredient 2 for the parity computing machine: Brauer relations

Let G be a finite group.

$$\sum_i H_i - \sum_j H_j'$$
 is a Brauer relation for G if

$$\sum_{i} \mathsf{Ind}_{H_{i}}^{G} \mathbb{1} = \sum_{j} \mathsf{Ind}_{H'_{j}}^{G} \mathbb{1}.$$

Theorem (Kani, Rosen)

Let Y/\mathbb{Q} be a curve, $G \leq \operatorname{Aut}_{\mathbb{Q}}(Y)$. If $\sum_i H_i - \sum_j H_j'$ is a Brauer relation for G then there's an isogeny

$$\prod_i \mathsf{Jac}_{Y/H_i} \to \prod_j \mathsf{Jac}_{Y/H'_j}.$$

Example

A Brauer relation for $G = C_2 \times C_2$ is

$$C_2 + C_2' + C_2'' - \{1\} - G - G.$$

By Kani & Rosen,

 $\mathsf{Jac}_E \cong E \sim \mathsf{Jac}_Y.$ \mathbb{P}^1 E \mathbb{P}^1

By Cassels & Tate,

$$\frac{\#E(\mathbb{Q})_{\text{tors}}^{2}}{\#J_{Y}(\mathbb{Q})_{\text{tors}}^{2}} \cdot \frac{\#III_{J_{Y}}}{\#III_{E}} \cdot \frac{C_{J_{Y}}}{C_{E}} = \frac{\text{Reg}_{E}}{\text{Reg}_{J_{Y}}}$$
$$= \square \cdot 2^{\text{rank}(E)}.$$

The parity computing machine

Theorem (Constantinou, Dokchitser, Green, Morgan)

Let Y/\mathbb{Q} be smooth, projective such that $\#\coprod_{\mathsf{Jac}_Y}[\ell^\infty]$ is finite. Assume $Y\to\mathbb{P}^1$ is a Galois cover and let $\Theta = \sum_i H_i - \sum_i H_i'$ be a Brauer relation for its Galois group. Then

$$\operatorname{ord}_{\ell}\left(\frac{\prod_{i}\operatorname{\mathsf{Reg}}_{\operatorname{\mathsf{Jac}}_{Y/H_{i}}}}{\prod_{j}\operatorname{\mathsf{Reg}}_{\operatorname{\mathsf{Jac}}_{Y/H_{j}'}}}\right) \; \equiv \; \sum_{v} \Lambda_{\Theta}(Y/\mathbb{Q}_{v}) \mod 2$$

where Λ_{Θ} is an expression in ℓ and local data for Y/\mathbb{Q}_{V} .

Example

Let
$$E: y^2 = x^3 + ax^2 + bx$$
, $Y: u^2 = v^4 + av^2 + b$. Let $\Theta = C_2 + C_2' + C_2'' - \{1\} - 2(C_2 \times C_2)$.

$$\Pr^{1} \bigvee_{E} \Pr^{1} \qquad \mathsf{rank}(E) \equiv \mathsf{ord}_{2}\left(\frac{\mathsf{Reg}_{E}}{\mathsf{Reg}_{\mathsf{Jac}_{Y}}}\right) \equiv \mathsf{ord}_{2}\left(\frac{\Omega(\mathsf{Jac}_{Y})}{\Omega(E)}\right) + \sum_{p} \mathsf{ord}_{2}\left(\frac{c_{p}(\mathsf{Jac}_{Y})}{c_{p}(E)}\right).$$

The parity computing machine

We recover local formulae for:

- E admitting a cyclic ℓ -isogeny (Cassels), if $E(K)[\ell] \neq \{O\}$ then $D_{2\ell}$
- Jac $_X$ for X hyperelliptic over quadratic extensions (Kramer, Tunnell; Morgan), $C_2 \times C_2$
- Jac_X for X of genus 2 with a Richelot isogeny (Dokchitser, Maistret), D_8
- Jac_X for X of genus 3 such that G_K acts on Jac_X[2] by a 2-group (Docking). S_4

Theorem (Constantinou, Dokchitser, Green, Morgan)

Assume $\# \coprod$ is finite. Let K be a number field and X/K a smooth, projective curve. There is a finite collection of Brauer relations Br such that

$$\operatorname{rank}(\operatorname{Jac}_X/K) \equiv \sum_{\Theta \in \operatorname{Br}} \sum_{\nu} \Lambda_{\Theta}(X/K_{\nu}) \mod 2.$$

Comparison with BSD

Theorem (Constantinou, Dokchitser, Green, Morgan)

Assume #III is finite. Let X/K be a smooth, projective curve over a number field. Then $\operatorname{rank}(\operatorname{Jac}_X/K) \equiv \sum_v \Lambda(X/K_v) \mod 2$.

The parity conjecture predicts that

$$(-1)^{\mathsf{rank}(\mathsf{Jac}_X/K)} = \prod_{v} w(\mathsf{Jac}_X/K_v) \Rightarrow \mathsf{rank}(\mathsf{Jac}_X/K) \equiv \sum_{v} \eta(X/K_v) \bmod 2.$$

Theorem (Green, Maistret)

- The 2-parity conjecture holds for $Jac_X \cong E_1 \times E_2$ where $E_1[2] \cong E_2[2]$.
- The p-parity conjecture holds for elliptic curves over totally real fields (we complete p=2).

Work in progress theorem (Dokchitser, Green, Morgan)

Assume # \coprod is finite. The parity conjecture holds for all semistable hyperelliptic curves over number fields with good ordinary reduction at places $v \mid 2$.

Thank you for your attention!