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Main results

Theorem (Dokchitser—G.—Konstantinou-Morgan)

Assuming 111 is finite, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of
the rank of elliptic curves.

Theorem (Dokchitser—G.—Konstantinou-Morgan)

Assuming 111 is finite, then for all smooth, projective curves over number fields X /K

rank(Jacx) = Z Av(X) mod 2
v place of K

where N\, € Z is an explicit invariant computed from curves over local fields.

Will assume III is finite throughout.
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The Birch and Swinnerton-Dyer and parity conjectures

Let E be an elliptic curve over a number field K.

Birch—-Swinnerton-Dyer conjecture (i) N Conjectural functional equation

rank(E) = ords—1 L(E, s) L*(E,s) = w(E)L*(E,2 —s)

The parity conjecture

|

(_l)rank(E) _ W(E) = H WV(E)

v place of K

When v | oo, wy(E) = —1. Otherwise,

+1 E/K, has good reduction,

(E) —1 E/K, has split multiplicative reduction,

W, =
Y +1 E/K, has non-split multiplicative reduction,

E /K, has additive reduction.
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Parity phenomena

If E is semistable, the parity conjecture predicts that

(_1)rank(E) _ (_1)#{v|oo} + #{vtoo, E/K, split muItipIicative}'

E/Q:y?=x3— —x + 108, Ag = —43. E has non-split multiplicative reduction at 43

= rank(E) is odd = E has a Q-point of infinite order.

If E/Q is semistable with split multiplicative reduction at 2 then rank(E/Q((g)) is odd. }

If K is imaginary quadratic and E/K has everywhere good reduction then rank(E/K) is odd.
If L/K has even degree then rank(E/L) is even and

rank(E/K) < rank(E/L).
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Develop an arithmetic analogue of the parity conjecture:

(_1)rank(E) _ H(_l)AV(E)‘

E.g., (Cassels) if E — E’ is an isogeny of degree d, then A, (E) = ordy(c,(E)/cv(E)).

Prove the parity conjecture:

(_1)rank(E) _ HWV(E)'

Relate A, (E) to w,(E), i.e. find H, € {£1} satisfying

(—1)ME) = H,w,(E) and HHVZH,

New idea: Use the arithmetic of covers of curves.
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Taking covers of curves

Let £/Q : y? = f(x) := x3 + ax + b be an elliptic curve, a # 0.

Q(y7xv A) D: Az = DiSCX(f(X) — y2)
Frbr g A = —27y"* + 54by? — (42° + 27b%).

-
Q(E) = Qly, x) -
\ S Qy,A) Let Y /Q be curve and G < Autg(Y) finite.
3

Doats = Q(Y)¢ =Q(Y/6),
~ = QYY) =QY(Y/G),
= (Jacy(Q) ® Q)¢ = Jacy,6(Q) ® Q.
QYB) = 195 @ ¥t @ p®“ = B has genus s + t + 2u.
s = dim Q}(B)> = dim Q}(P!) = 0, s+t=dimQY(B)® = dimQ(D) =1,
s+u=dimQY(B)? = dimQ(E) = 1.

Q(y)
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Exhibiting isogenies

Let £/Q : y? = f(x) := x3 + ax + b be an elliptic curve, a # 0.

Qy,x,A) -
B[y = f(x). A% = Discx(F(x)—y?)} Theorem (Kani—Rosen)

/ \ Let Y/Q be a curve and G < Autg(Y') finite. Suppose

O(E) = O(y. ) that @i(C['G/H,-]. = @, C[G/H]] for some H;, H; < G.
Ss Qy, A) Then there's an isogeny
D : A? = Discx(f(x)—y?)
/ HJacY/HI. — HJacy/Hj.
Q(y) : ’

Example: there's an isogeny E x E x Jacp — Jacg
ClS3/1]=1@® e p®?, C[S3/G]=1@®p, C[S3/C]=1d¢ C[S3/S3]=1.

== there’s an isogeny Jacg,c, x Jacg/c, X Jacg,c, — Jacg/; x Jacg/s, x Jacgys,-

Il Il I I Il I
E E Jacp Jacg 0 0
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Isogeny invariance of BSD

Birch-Swinnerton-Dyer conjecture (ii) Theorem (Cassels—Tate)

L(rE)( E,1) #111¢ - Regp - Cr The BSD coefficient is invariant under isogeny.

— BSDE = 1
re! #E(Q)tors Apply to the isogeny E x E x Jacp — Jacg.

- 3rank(E)+rank(JacD) — RngaCB _ #JaCB(Q)Eors . #I-HzE #mJacD . CE CJacD -0. CE CJacD
RegZE RngacD #E(Q)fors #JaCD(Q)tzors #IHJaCB CJaCB CJacB

Theorem
Assuming that II1g[3%°] and 111, [3°°] are finite,

rank(E) + rank(Jacp) = Zord3 (CV CV(JaCD)) mod 2.

v(Jacg)
Let E: y? = 3x + 108 = Jacp 1 y? =x3 — 35 x% + x (Ag = —43, Ajac, = g 43)
v=3 v = 43 vV =00
. 12.3 121 5.46..2-2.14...\ _
rank(E) + rank(Jacp) = ords ( 3 ) + ords < = ) + ords <T> =1 mod 2.
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An arithmetic analogue of the parity conjecture

Q(v/x, v&(x)) Suppose g(x) is quadratic.
D:{y*=x, A% = g(x)} There's an isogeny Jacp — E' = BSDj,, = BSDg/
Regg/ Clac
QVX)  Qx ye(x) Qx, Vek) = O-gerkthen) — SSEL .
22 = xg(x) & Jacp E’
\ | / = rank(Jacp) = Zo do c(Jacp) mod 2
Q(x) B c(E) '
Q(y,x,A) Let E/Q : y? = x3+ax+b be an elliptic curve, a # 0.
B : {y? = f(x), A% = Disc,(f(x)—y?)} Then
/ \ D : A% = —27y* + 54by® — (4a° + 27b%)
Q(E) = Q(y,x) (2
\ S Qp.a) =&br)
D : A? = Disc,(f(x)—y?) and
2
aly) / rank(E) + rank(Jacp) = ;ordg (%) mod 2.
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An arithmetic analogue of the parity conjecture

Theorem (Dokchitser—G.—Konstantinou-Morgan)

Assume 111 is finite. Let X /Q be a smooth, projective curve. There is an explicit invariant
A € 7Z computed from curves over local fields such that

rank(Jacx) ZA (X) mod 2.

E.g., When E : y? = x3 4+ ax + b,

0 - i (ST o (129

The parity conjecture

(—1)rankUacx) va(Jacx).
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Let £/Q : y? = f(x) := x3 + ax + b be an elliptic curve, a # 0.

,XvA ! i
Bl f(x?(ilz ” Dis)cx(f(x)—y2)} There's an isogeny E x E x Jacp — Jacg.

Q(E) \ Assuming I g[3°°], W1 ,.,[3°°] are finite,
5 Q(}_” A) ev(E)2cy(Jacp)
D>2= Discx(f(x)~y?) (_1)rank(E)+rank(JacD) _ H(—l)ord3(Tacf3)D_) ‘

QFY) :

The parity conjecture for E x Jacp

(_1)rank(E)+rank(JacD) _ HWV(E)WV(JaCD)-

Goal: Relate ords (M) to w, (E)w,(Jacp).

o (Jacg)
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Local comparison

Eg.,let E:y?=x3— %x—i— 13—(% = Jacp : y? =x3 — %x2+x (Ap=-43, AJaCD=33'43)

cv(E)?c,(Jacp) ord3(cv(lz‘)?+vcua)c&))
v ~ U | (D) W(acg wy(E) | w,(Jacp)
: 5o i -1 +1
e = +1 +1 +1
5.46..2-2.14... __
> Soieen =3 1 - o
p#3,43 1 o » »

Let v be a place of Q. Then,

( l)ordg,(%&)) ) —w(E)wy(Jacp) v =3 or oo,

wy(E)w,(Jacp)  otherwise.
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Proving the parity conjecture for E

(_1)ord3(%‘;c(:';9)) _ ) ~w(E)w(Jacp) v =3or o,

wy(E)w,(Jacp)  otherwise.

Theorem
Let E/Q be an elliptic curve. Assuming II1g[3°], I ,c,[3%°], I jac, [2°°] are finite, the parity
conjecture holds for E.

Proof.
Write E : y?> = x3 4 ax + b with a # 0. Then,

cv(E)?ev(Jacp)
(_l)rank(E)+rank(JacD) _ H(_l)orda(W) — (_1)2HWV(E)WV(JaCD)'
Additionally,
cv(Jacp)
(—1)rankUaco) — H(_1)°rd2( o (E)) ) — H(3a, —3b),(6b,3Ag),w,(Jacp) = HWV(JacD).

v
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Further applications to the parity conjecture

Theorem (G.—Maistret)
The 2-parity conjecture holds for Jacc where C : y? = f(x?) has genus 2.

Theorem (Nekovar, Dokchitser?, G.—Maistret)

The p-parity conjecture holds for elliptic curves over totally real fields.

Work in progress (Dokchitser—G.—Morgan)

Assume 111 is finite. The parity conjecture holds for Jacobians of semistable* hyperelliptic
curves.
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Thank you for your attention!
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