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Definition of a function field

Let p be a prime and g = p”

Definition

A function field is a finitely generated field extension K /I, of transcendence degree 1.

There is a correspondence between function fields over IF; and non-singular, projective,

irreducible algebraic curves over Fg.

The function field for C : F(x,y) = 0is Fg(C) = Fq(x)[y]/(F(x,y)).

m C:y?’=x3—1over Fs = F5(C1) = Fs(x,Vx3 — 1) or Fs(y, \3/y2 +1)
m G {y?=x3-1, w? =2} over F5 = Fs5(C) = Fas(x, vVx3 — 1) or Fas(y, v/y2 + 1).
] F5(C2) = F25(C1).

Function fields and number fields share many properties; both are called global fields.
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Notation

r

E paprime, g=0p
m C a non-singular, projective, irreducible algebraic curve over F
m K=Fgy(C)

Definition
A closed point on C is the Gal(F,/F,)-orbit of a point P € C(F,).

Let C: y? = x3 — x be a curve over F7. Then (2,v/—1) € C(F49) and the associated closed
point is

{(27 \/__1)7 (27 _\/__1)}

m X is the set of closed points on C

Holly Green (UCL) Curves over function fields study group May 24th, 2022 4/15



Ring of integers

We think of the integers (of Q) as having no denominator, i.e.

7= ﬂ {xeQ:|x]p <1}

p prime

For K = F4(C), can we construct O in the same way?

Definition

Let P € C(Fgn). The absolute value of f € K at P is |f|p = (q")°r(F).

The absolute values on K correspond to closed points on C. As above,

ﬂ{fEK:|f|p§1}={f€K:fhasnopoles}z]Fq.
PeX

Definition

Let S C X be a finite set. The ring of S-integers of K is

Ok,s = {f € K : f has no poles outside of S}.
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Ring of integers

Let S C X be a finite set. The ring of S-integers of K is

Ok,s = {f € K : f has no poles outside of S}.

| A

Examples
Let C:y?=x3—x (p#2). Then

K =Fq(x)y]/(y* = x* + x) = Frac({a(x) + yb(x) : a, b € Fq[x]}).

m S = {0} = Oks =Fylx,yl/(y? — x3 + x).
m S={(0,0)},lets=1/x, t=y/x>*= C:t?=5—53 Oks=Fq4[s, t]/(t? — s+ %)
mS= {(_170)7 (07 0)7 (1,0)7 OO} = OK,S = Fq[x7}/a 1/)/]/(}/2 - X3 +X)'

More generally, if C: F(x,y) =0 and S = {points at co} then Ok s = Fq[x, y]/(F(x,y)).
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The units of K are the invertible elements in the ring of integers.

Definition
Let S C X be a finite set. The S-unit group of K is

O ¢ ={f € K : f has no poles or zeros outside of S}.

Examples
m Let C = P! over F5 and S = {0, {£V/2}}. Then

Ok,s = Fs[x,1/(x* = 2)], OF s =T & (x* - 2)%.
mlet C:y?=x3—x(p#2)and S={cc}. Then

Ok.s = Fqlx, y1/(y? = 5 + x), Ok,s =Fg-
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Group of units

Extended example
Let C:y*>=x>—x (p#2), S={P1=(-1,0),P» = (0,0),Ps = (1,0),00}. Let f € O .
Multiply by powers of x + 1, x and x — 1 (with double zeros at P;), to get g with

ordp,(g) =0or 1, ordp(g) =0 for P ¢ S.
We have (g) := ordos(g)[oc] + > ordp,(g)[Pi] = 0 € Jac C. In terms of points of C,

ordp, =0 for all i = g € FX
ordp, (g)[P1] + ordp,(g)[P>] + ordp,(g)[P3] = o0 = P . &€ lq
ordp, =1foralli=geF;y.

SofeIF';EB(x—i-I)ZGB(X)Z@(X—I)Z@{I,)/}:>f€IF§EB(x+1)Z@(X)Z€ByZ.

Theorem (Dirichlet’s unit theorem)

O s 2Fg @277

Holly Green (UCL) Curves over function fields study group May 24th, 2022



Prime ideals

Recall, for p € Z a prime, (p) = {a € Z : |a|, < 1} is the prime ideal.

Definition

Fix P € X\S. The prime ideal of Ok s at P is

pps:={f € Oks:|flp <1} ={f € K:f has a zero at P and no poles outside of S}.

There's a correspondence between primes of Ok s and points in X\S.

Example

Let C: y? = x3 — x over Fy.

m S = {0} = Oks=Frx,y]/(y* — x>+ x) and

p(0,0),S = (Xay)a p{(2,:|:\/—71)},5 = (X - 2;_}/2 + 1) = (X - 2aX3 — X+ 1)

® S={(-1,0),(0,0),(1,0),00} = (x,y) is no longer prime, it is generated by units.
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Prime ideals

Fix P € X\S. The prime ideal of Ok s at P is

pps:={f €Oks:|flp <1} ={f € K:f has a zero at P and no poles outside of S}.

Example

| A

Let C: y? = x3 — x over F7, S = {c0}. Then Pi2ev=T)s = (X — 2,y?+1) and

Ok,s/P{2av=T)1.s = F7ly1/(y* + 1) = Fao.

The residue degree of a prime is the size of the Galois orbit of the corresponding point.

The Chinese Remainder Theorem

Let P, Q € X\S be distinct. Given s,t € Fq defined over the residue fields of P and Q
respectively, there's some f € Ok s such that f(P) =s and f(Q) = t.
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The Class Group

The class group indicates how far we are from having unique factorisation.

Fractional ideals look like

H p;’?sew» Z np[P]

PeXx\S PeX\S

where np € Z, almost all are zero. Write Divy s for the group of these.
Principal ideals here correspond to divisors of the type

> ordp(fP],

PeX\S

for f € Ok s. Write Princk s for the group generated by these.

Definition

Let S C X be a finite set. The S-class group of K is

ClK’s = DiVK’s/PrinCK’s
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The Class Group

Let S C X be a finite set. The S-class group of K is

C|K’5 = DiVK’s/PrinCK’s

Examples

= Let C =P over Fy, S = {oo}. Fix D=3 _pcx np[P]. Let f € Ok s have a zero of
order np at P when np > 0; and g € Ok s have a zero of order —np at P when np < 0.
Suppose f, g have no other zeros = D ~ 3 pcx(ordp(f) — ordp(g))[P] = Clk,s = 1.
m Let C:y? =x3—xover Fy, S = {co}. Consider D = > oorpex NP[P], or
> ootpex NPIP] = (X ozpex nP)[oc]. Equivalence classes of degree 0 divisors correspond
to points in C(Fq) = Clx,s = C(Fq). If g =7 then Clx s = Z/27 @& Z/A4Z.

More generally, if S = {co} U T then
Clx,s = Jacc(Fq)/([P] = #P[oc]|P € T).
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Factorising primes

Let K = Fq4(x,y) = Fq(C) be a finite, separable extension of Fy(x), where
m for a non-constant morphism ¢ : C — P! we let S = ¢~1(o0), and

m y € Ok s has minimum polynomial g(t) € Fq[x][t]

If C: F(x,y)=0theny € Fgy[x,y]/(F). J

Take p to be a prime of Fq[x].

Theorem (Dedekind's theorem)

Let g(t) = g1(t)* x --- x g,(t)* be the factorisation of g(t) := g(t) mod p into irreducibles,
with g;(t) := gi(t) mod p for monic gi(t) € Fq[x][t], then

p=p7t XX Py

where p; = (p, gi(y)). Moreover, the residue degree of p; is f; = deg g;(t).
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Factorising primes

Example

Let C: y? = x9T1 — 1 over F, (p # 2). We can deduce how a prime p = (x — a) of F[x]
splits in Fq[C]. Suppose a € F,.

The minimum polynomial of y is g(t) = t> — (x9+1 — 1). Reducing modulo p gives

i a9l =2’ =1mod g
2

2= £ - (-1 = {

t2—r, reFy a%l=2"%1modgq

ma’=1=p=(x—a,y)?and (x — a,y) has residue degree 1 (cf. {(a,0)} € X).

ma#landr=0=p=(x—ay—r)(x—ay++/r)and (x—a,y £ /r) have residue
degree 1 (cf. {(a,v/r)},{(a, =v/1)} € X).

ma’#landr#0=p=(x—a,y?>—r)and (x — a,y? — r) has residue degree 2 (cf.

{(aa \/;)7(37_\/7)} € X) )
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Thank you for your attention!
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