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Today I’m going to present a classical unsolved problem for which the BSD conjecture
provides some insight.

Recall, the weak form of the Birch and Swinnerton–Dyer conjecture says

Conjecture 1 (Birch-Swinnerton–Dyer). For E an elliptic curve over Q,

ords=1L(E, s) = rank E.

This is a remarkable statement connecting an analytic property to the primary arithmetic
invariant associated to the elliptic curve.

Assuming that this holds true, we can provide a solution to the ‘congruent number
problem’ in certain cases.

Definition 2. r ∈ Q is a congruent number if there exists a right-angled triangle of area r
whose sides have rational length. This merely says that there exists a ration solution (a, b, c)
to the equations

a2 + b2 = c2,
1

2
ab = r.

Example 3. The first three congruent numbers are 5, 6, 7. The triples providing the
necessary right-angled triangles are (3

2
, 20

3
, 41

6
), (3, 4, 5), (24

5
, 35
12
, 337

60
), respectively.

This is an unsolved problem in the sense that no algorithm exists to show definitively
whether or not any given r is a congruent number.

We provide an answer upon restricting to n ∈ Z positive and square-free. For such an n,
define

En : y2 = x3 − n2x.

Notice that ∆ = 64n6 6= 0 and so En is in fact an elliptic curve.

Proposition 4. The following defines a one-to-one correspondence

{(a, b, c) ∈ Q3 | a2 + b2 = c2,
1

2
ab = n} ←→ {(x, y) ∈ En(Q) | y 6= 0}

(a, b, c) 7−→
(

nb

c− a
,

2n2

c− a

)
(
x2 − n2

y
,
2nx

y
,
x2 + n2

y

)
7−→(x, y).
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This allows us to rephrase: n is a congruent number if and only if there’s some (x, y) ∈
En(Q) such that y 6= 0.

We can make this even more concrete by studying the structure of En(Q). The Mordell–
Weil theorem tells us that

En(Q) ∼= En(Q)tors × Zr,
where En(Q)tors is a finite group and r ≥ 0 is the rank of En. We can actually determine
En(Q)tors explicitly.

Observe that En(Q)[2] = {O, (0, 0), (±n, 0)} ∼= Z/2Z×Z/2Z is a subgroup of En(Q)tors.
I claim that in fact, En(Q)tors ∼= Z/2Z× Z/2Z.

This can be determined from the following two lemmas and Dirichlet’s Theorem on primes
in arithmetic progressions:

Remark. The latter says that if gcd(a, n) = 1, then there are infinitely many primes p, such
that p ≡ a (modn).

Lemma 5. For p ≡ 3 (mod 4) such that p - ∆, #Ẽn(Fp) = p + 1, where Ẽn denotes the
reduction of En modulo p.

Proof. Let 0,±n 6= x ∈ Fp so that our point doesn’t come from a torsion point. Note that
−1 is not a square, so for each x, either f(x) or f(−x) = −f(x) is. So, for each such x we
get two points in Ẽn(Fp). Counting also our torsion points gives the result.

Lemma 6. Given an integer m > 4, there are infinitely many primes p ≡ 3 (mod 4) such
that m - p + 1.

Proof. If m = 2k then there are infinitely many primes p ≡ 3 (mod m). If m has an odd
prime divisor, q, then the Chinese Remainder Theorem gives the existence of some x ∈ Z
such that x ≡ 1(mod q) and x ≡ 3(mod 4). Now, there are infinitely many p ≡ x(mod 4q)
so the result follows,

Now, Dirichlet tells us that there are infinitely many primes p ≡ 3 (mod 4) such that
#Ẽn(Fp) = p + 1. A restatement of this says that for only finitely many p ≡ 3 (mod 4), i.e
those dividing ∆, does #En(Q)tors - p + 1. So if #En(Q)tors > 4, Lemma 6 would give rise
to a contradiction.

We can therefore identify En(Q)tors with {O, (0, 0), (±n, 0)}, and if there exists P =
(x, y) ∈ En(Q) with y 6= 0, then P must be a point of infinite order.

So n is a congruent number if and only if rank En ≥ 1. Applying BSD, this becomes if
and only if L(En, 1) = 0, and this value is computable (not by hand) using magma, sage,
etc.

In particular, Tim Dokchitser has an algorithm implemented in Sage which calculates
the L-value at 1 using the following

Theorem 7 (Dokchitser).

L(E, 1) = 2(1 + wE)
∑
n≥1

an
n

∫ ∞
nπ
√

(NE)
−1

ϕ(x) dx.

2



We saw that BSD implies the parity conjecture, i.e.

Conjecture 8 (Parity conjecture). wE = (−1)rank E.

Combining this with the non-trivial fact that wEn = −1 whenever n ≡ 5, 6, 7 (mod 8),
we obtain

Theorem 9. All n ≡ 5, 6, 7 (mod 8) are congruent numbers.

Alternatively, Tim’s formulation gives for any n such that wEn = −1, n is congruent.

A more down to earth characterisation of congruent numbers is described in a result of
Tunnell, who also assumed that BSD holds.

Theorem 10 (Tunnell). n ∈ Z positive and square-free is a congruent number if and only if{
#{(x, y, z) |n = x2 + 2y2 + 8z2} = 2#{(x, y, z) |n = x2 + 2y2 + 32z2}, n odd,

#{(x, y, z) |n = 2x2 + 8y2 + 16z2} = 2#{(x, y, z) |n = 2x2 + 8y2 + 64z2}, n even.

Again this is computable, and much easier to do by hand for small n, i.e. we can
immediately see that n = 1 is not a congruent number.

The proof of Tunnell’s theorem is based on modular forms of weight 3
2
.
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