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Statement of BSD

Let X/Q be a smooth curve.
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Statement of BSD

Let X/Q be a smooth curve.

Theorem (Mordell-Weil)

JacX(Q) o rank(JacX/Q) + J5c X(Q)tors-

v

Conjecture (Birch and Swinnerton—-Dyer, Tate)

Assuming that L(Jac X /Q, s) has an analytic continuation to C,
m rank(Jac X/Q) = ords—1L(Jac X/Q, s),
m the leading term in the Taylor expansion of L(Jac X/Q,s) ats =1 is

#111(Jac X)Q2(Jac X)Reg(Jac X) [ ], cp(Jac X)

BSD(Jac X/Q) = #Jac X(Q)2
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The L-function has an expression as an Euler product

L(JacX/Qs)= [[ Lp(Jacx/Q,p~*)7".

PEZ prime

Holly Green (UCL) BSD for curves March 5th, 2021 3/10



The L-function has an expression as an Euler product

L(JacX/Qs)= [[ Lp(Jacx/Q,p~*)7".

PEZ prime

For a prime p at which X has good reduction,

Lp(Jac X, T)
(1-T)A-pT)

= Zp(X, T) :=exp Z —#X(]Fpn) T"

n
n>1
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The L-function has an expression as an Euler product

L(JacX/Qs)= [[ Lp(Jacx/Q,p~*)7".

PEZ prime

For a prime p at which X has good reduction,

Lp(JaCX, T) = = #Y(Fpn) n
(1 - T)(l — pT) - ZP(X7 T) = exp ; TT

Let X be a regular model of X over Zj, if Frob, acts trivally on X
Ly(JacX, T) = (1 —pT)N(1 - T)Nez,(x, T),

where N; = #irreducible comps of X, N¢ = #connected comps of X.
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L-function
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L-function

Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).
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L-function

Example
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L-function

Example
Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).

X is a pentagon made of E : y? = x(x — 1)(x — 2)

E and 4 copies of P!.

v
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L-function

Example
Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).

X is a pentagon made of E : y? = x(x — 1)(x — 2)

E and 4 copies of P!.

Observe that N; =5 and N¢c =1
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L-function

Example
Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).

X is a pentagon made of E : y? = x(x — 1)(x — 2)

E and 4 copies of P!.

Observe that N =5 and N¢c =1, so

Ls(JacX, T)=(1-5T)°(1— T)Z(X, T).
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L-function

Example
Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).

X is a pentagon made of E : y? = x(x — 1)(x — 2)

E and 4 copies of P!.

Observe that N =5 and N¢c =1, so

Ls(JacX, T)=(1-5T)°(1— T)Z(X, T).

Zs(X, T) = exp (Z HE(Fsn) +4(5" +1) -5 T")

n
n>1

v
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L-function

Example
Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).

X is a pentagon made of E : y? = x(x — 1)(x —

2)

E and 4 copies of P!.
Observe that Ny =5 and N¢c = 1, so
Ls(JacX, T) = (1 -5T)°(1 — T)Zs(X, T).
_ HE(Fsn) +4(5"+1) -5 _, _ Ls(E, T) 1-T)
L, T) = e (; n T) TI-Ma-5T)(1-57)*
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E and 4 copies of P!.
Observe that Ny =5 and N¢c = 1, so
Ls(JacX, T) = (1 -5T)°(1 — T)Zs(X, T).
_ HE(Fsn) +4(5"+1) -5 _, _ Ls(E, T) 1-T)
L, T) = e (; n T) TI-Ma-5T)(1-57)*

So Ls(Jac X, T)=Ls(E, T)(1—T)

v

Holly Green (UCL) BSD for curves March 5th, 2021

4/10



L-function

Example
Compute Ls(Jac X/Q, T) for X : y? = x(x — 1)(x — 2)((x + 1) — 5°).

X is a pentagon made of E : y? = x(x — 1)(x —

2)

E and 4 copies of P!.
Observe that Ny =5 and N¢c = 1, so
Ls(JacX, T) = (1 -5T)°(1 — T)Zs(X, T).
_ HE(Fsn) +4(5"+1) -5 _, _ Ls(E, T) 1-T)
L, T) = e (; n T) TI-Ma-5T)(1-57)*

So Ls(Jac X, T)=Ls(E, T)(1—T), i.e.

Ls(JacX, T) = (1 +2T +5T%)(1-T)=14+T +3T%-5T3.

v
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A.
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is

Q(Jac X) = covol(A NR&) x #Comp Jac X(R).
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

: : 1 —
Fix wi,...,wg a basis of Q3 and w =wi A ... Awg.
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

Fix wi,...,wg a basis of Q% and w = w1 A ... Aw,. Choose a symplectic
basis Y1y Vg Vg+1ls- -5 V2g of H]_(X,Z)
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

Fix wi,...,wg a basis of Q% and w = w1 A ... Aw,. Choose a symplectic

basis Y1y Vg Vg+1ls- -5 V2g of H]_(X,Z)
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

Fix wi,...,wg a basis of Q% and w = w1 A ... Aw,. Choose a symplectic
basis Y1y Vg Vg+1ls- -5 V2g of H]_(X,Z)

Let A b ted b ( ) e Cse
e e generated by f'y,- wj j=1,..g @ O
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

Fix wi,...,wg a basis of Q% and w = w1 A ... Aw,. Choose a symplectic
basis Yis--s Vg Vg+ls - -5 )2g of Hl(X,Z).

Let A b ted b ( ) e Cse
e e generated by f'y,- wj j=1,..g @ O

covol(A NR&) = covol(A, NRE) x H )%
P

p
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

Fix wi,...,wg a basis of Q% and w = w1 A ... Aw,. Choose a symplectic
basis Yis--s Vg Vg+ls - -5 )2g of Hl(X,Z).

Let A b ted b ( ) e Cse
e e generated by f'y,- wj j=1,..g @ O

covol(A NR&) = covol(A, NRE) x H
P

w
o
wlp

j=1,...g
For each I C {1,...,2g},

Il=g,let P :=

det (Re(f%, wj-)>

iel
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Real period

Let X/Q be a curve of genus g, then Jac X(C) = C&/A. The real period is
Q(Jac X) = covol(A NR&) x #Comp Jac X(R).

Fix wi,...,wg a basis of Q% and w = w1 A ... Aw,. Choose a symplectic
basis Yis--s Vg Vg+ls - -5 )2g of Hl(X,Z).

Let A b ted b ( ) cCe
e e generated by fv,- i Jj=1l,..g @ <

covol(A NR&) = covol(A, NRE) x H
P

w
o
wlp

i=1,...,
For each |  {1,...,2g}, |I| = g, let P} := e

det (Re(f%, w'j)>i€/

The lattice inside R spanned by the P; is generated by covol(A, NRE). I
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Real period

Example 1

Example 2

v
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Real period

Example 1

When g =1 then w; = g—; is minimal.

Example 2

v
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Real period

Example 1

When g =1 then w; (21_x is minimal. We have

(L5 e

Py =

(%)

Example 2

v
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Real period

Example 1

When g =1 then w; = g—; is minimal. We have

dx dx
P{1}=Re</ *)‘=/*7 Py =
m 2 v 2y

(%)

Example 2

v
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Real period

Example 1

When g =1 then w; = g—; is minimal. We have

dx dx
P{1}=Re</ *)‘=/*7 Py =
m 2 v 2y

Re(/ %>‘ =0.
v2 2Y

Example 2

v
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Real period

Example 1

When g =1 then w; = ﬁ is minimal. We have

( / dx)‘ / dx
Re — = — [
w2y v 2y

This recovers Q(E/Q) = ‘fEO(]R) g_;

Py = P2y =

Re(/ %>‘ =0.
v2 2Y

x #Comp E(R).

Example 2

v
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Real period

Example 1

When g = 1 then w; = & is minimal. We have

2y
[ &
v 2y

(5] -

This recovers Q(E/Q) = ‘fEO(]R) g_;

Py = ; P2y =

Re(/ %>‘ =0.
v2 2Y

x #Comp E(R).

Example 2

Let X : y?2 = x5+ x* —3x3 — 2x®> — x.
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Real period

Example 1

When g =1 then w; = ﬁ is minimal. We have
m 2 m 2

This recovers Q(E/Q) = ‘fEO(]R) g_;

Py = P2y =

Re(/ %>‘ =0.
v2 2Y

x #Comp E(R).

Example 2

Let X : y?2 = x5+ x* —3x3 — 2x®> — x.

Let wi,wpr = %,x% and 71, 72 be the real loops.

%
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Real period

Example 1

When g =1 then w; = ﬁ is minimal. We have
m 2 m 2

This recovers Q(E/Q) = ‘on(R) -

Py = P2y =

Re(/ %>‘ =0.
v2 2Y

5, | x #Comp E(R).

Example 2
Let X : y?2 = x5+ x* —3x3 — 2x®> — x.
Let wi,wpr = %,x% and 71, 72 be the real loops.
P{12}—/dx/ / dX/% %
71 Y2 71 72 y

v
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Real period

Example 1

When g =1 then w; = ﬁ is minimal. We have
m 2 m 2

This recovers Q(E/Q) = ‘fEO(]R) g_;

Py = P2y =

Re(/ %>‘ =0.
v2 2Y

x #Comp E(R).

Example 2
Let X : y? = x% 4+ x* —3x3 —2x%> — x.
Let wi,wpr = %,x% and 71, 72 be the real loops.
P{lz}—/dx/ / dX/% %
" 72 m v Y
So covol(A, NR?) ~ 22.712

v
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Real period

Example 1

When g =1 then w; = (21_x is minimal. We have
m 2 m 2

This recovers Q(E/Q) = ‘fEO(]R) g_;

Py = P2y =

Re(/ %>‘ =0.
v2 2Y

x #Comp E(R).

Example 2

Let X : y?2 = x5+ x* —3x3 — 2x®> — x.

dx
y b

I K K
1 72 71 "{2y

So covol(A, NR?) a2 22.712 = Q(Jac X) = 11.356.

Let wi,wpr = x% and 71, 72 be the real loops.

%
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Tamagawa numbers

The Tamagawa product is

H cp(Jac X/Q)

where ¢, is the Tamagawa number at p.
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H cp(Jac X/Q)

where ¢, is the Tamagawa number at p.

Assume that X is semistable over Q,
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Tamagawa numbers

The Tamagawa product is
H cp(Jac X/Q)
P

where ¢, is the Tamagawa number at p.

Assume that X is semistable over Q, and let T be the dual graph of the
special fibre of the minimal regular model over Ogyr.
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Tamagawa numbers

The Tamagawa product is
H cp(Jac X/Q)
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where ¢, is the Tamagawa number at p.

Assume that X is semistable over Q, and let T be the dual graph of the
special fibre of the minimal regular model over Ogyr.

Recall, H1(T,Z) = (loops in T)z
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Tamagawa numbers

The Tamagawa product is
H cp(Jac X/Q)
P

where ¢, is the Tamagawa number at p.

Assume that X is semistable over Q, and let T be the dual graph of the
special fibre of the minimal regular model over Ogyr.

Recall, H1(T,Z) = (loops in T)z has an intersection pairing arising from:

(Ei, Ej) = djj, (Ej, —E;) = —1.
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Tamagawa numbers

The Tamagawa product is
H cp(Jac X/Q)
P

where ¢, is the Tamagawa number at p.

Assume that X is semistable over Q, and let T be the dual graph of the
special fibre of the minimal regular model over Ogyr.

Recall, H1(T,Z) = (loops in T)z has an intersection pairing arising from:

(Ei, Ej) = 6j, (Ej, —E;) = —1.

cp(Jac X /Q) is the size of the Frob, invariants of the cokernel of

Hy(T,Z) — Hom(Hy(T,Z),Z);, £+ (£,).
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Tamagawa numbers

Example 1

Example 2
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Tamagawa numbers

Example 1

Hi(T,Z) = (O)z

Example 2

V.
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Tamagawa numbers

Example 1

@ Hi(T,Z) = (£)z, so Hom(Hi(T,Z),Z) = Z.

Example 2

V.
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Tamagawa numbers

Example 1

Hi(T,Z) = (£)z, so Hom(Hi(T,Z),Z) = Z.
@ The image is {(k(,-) : k € Z} = nZ, as (k{, () = kn.

Example 2

V.
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Tamagawa numbers

Example 1

Hi(T,Z) = (£)z, so Hom(H.(T,Z),Z) = Z.
@ The image is {(k¢,-) : k € Z} = nZ, as (k{,0) = kn.
The cokernel is Z/nZ.

Example 2

V.
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Hi(T,Z) = (£)z, so Hom(H.(T,Z),Z) = Z.
@ The image is {(k¢,-) : k € Z} = nZ, as (k{,0) = kn.
The cokernel is Z/nZ.

m If Frobenius acts trivially on T
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Example 1

Hi(T,Z) = (£)z, so Hom(H.(T,Z),Z) = Z.
@ The image is {(k¢,-) : k € Z} = nZ, as (k{,0) = kn.
The cokernel is Z/nZ.

m If Frobenius acts trivially on T = ¢, = n.
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Tamagawa numbers

Example 1

Hi(T,Z) = (£)z, so Hom(H.(T,Z),Z) = Z.
@ The image is {(k¢,-) : k € Z} = nZ, as (k{,0) = kn.
The cokernel is Z/nZ.

m If Frobenius acts trivially on T = ¢, = n.

m If Frobenius reflects T = ¢, =1 if nis odd, 2 if n is even.

Example 2

The image of bil1 + boly under a1ly + axls is
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Tamagawa numbers

Example 1

Hi(T,Z) = (£)z, so Hom(H.(T,Z),Z) = Z.
@ The image is {(k¢,-) : k € Z} = nZ, as (k{,0) = kn.
The cokernel is Z/nZ.

m If Frobenius acts trivially on T = ¢, = n.

m If Frobenius reflects T = ¢, =1 if nis odd, 2 if n is even.

Example 2

The image of bil1 + boly under a1ly + axls is

o))

If Frobenius acts trivially on T = ¢, = 24.

V.
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Tate-Shafarevich group
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Tate-Shafarevich group

Definition

A curve X/Q of genus g is deficient at v if it has no Q,-rational divisor of
degree g — 1.

Holly Green (UCL) BSD for curves March 5th, 2021 9/10



Tate-Shafarevich group

Definition

A curve X/Q of genus g is deficient at v if it has no Q,-rational divisor of
degree g — 1.

Is x? + y?> = —1 deficient at co?
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Is x? + y?> = —1 deficient at co? Is there a degree —1 divisor fixed by
complex conjugation?
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A curve X/Q of genus g is deficient at v if it has no Q,-rational divisor of
degree g — 1.

Is x? + y?> = —1 deficient at co? Is there a degree —1 divisor fixed by
complex conjugation? No
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Tate-Shafarevich group

Definition

A curve X/Q of genus g is deficient at v if it has no Q,-rational divisor of
degree g — 1.

Is x? + y?> = —1 deficient at co? Is there a degree —1 divisor fixed by
complex conjugation? No = this is deficient.

Theorem (B. Poonen & M. Stoll)

AIMI(Jacx/Q) = |0 X is deficient at an even number of v
2.0 otherwise
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Tate-Shafarevich group

Definition

A curve X/Q of genus g is deficient at v if it has no Q,-rational divisor of
degree g — 1.

Is x? + y?> = —1 deficient at co? Is there a degree —1 divisor fixed by
complex conjugation? No = this is deficient.

Theorem (B. Poonen & M. Stoll)

AIMI(Jacx/Q) = |0 X is deficient at an even number of v
2.0 otherwise

So #III = [ for elliptic curves

Holly Green (UCL) BSD for curves March 5th, 2021 9/10



Tate-Shafarevich group

Definition

A curve X/Q of genus g is deficient at v if it has no Q,-rational divisor of
degree g — 1.

Is x? + y?> = —1 deficient at co? Is there a degree —1 divisor fixed by
complex conjugation? No = this is deficient.

Theorem (B. Poonen & M. Stoll)

AIMI(Jacx/Q) = |0 X is deficient at an even number of v
2.0 otherwise

So #II1 = [0 for elliptic curves and for odd genus hyperelliptic curves.
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Thank you for listening!

Any questions?
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