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1. The statement

Notation 1.1. • K a number field of discriminant ∆K

• E/K an elliptic curve
• | · |v the normalised absolute value on Kv (for v a place of K)
• qv the cardinality of the residue field of Kv

Conjecture 1 (Birch and Swinnerton-Dyer part II). Assuming XE is finite and that L(E, s) has
an analytic continuation to C, its lead coefficient at s = 1 is

#XE · RegE · CE

#E(K)2tors ·
√
|∆K |

.

Todays focus is the product of local terms CE , which is model dependent.

Definition 1.2. Fix an non-zero differential ω on E. Then

CE :=
∏
v∤∞

cE/Kv

∣∣∣ ω
ω0
v

∣∣∣
v
·
∏
v|∞

Kv
∼=R

∫
E(Kv)

|ω|v ·
∏
v|∞

Kv
∼=C

∫
E(Kv)

|ω ∧ ω̄| =
∏
v

CE/Kv
(ω)

where cE/Kv
= [E(Kv) : E0(Kv)] is a Tamagawa number and ω0

v is a Néron differential.

If E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 is a minimal Weierstrass equation over Kv, then

ω0
v = ± dx

2y + a1x+ a3
.

Example 1.3. Let E/Q : y2 = x3 + 1712, ∆E = −23 · 33 · 1724. This is minimal over Qp, and so
ω0
p = ±dx

2y whenever p ̸= 17.
Let y = 176Y , x = 174X. Then E : Y 2 = X3 + 1 is minimal over Q17 and

ω0
17 = ±dX

2Y
= ±172

dx

2y
.

Remark 1.4. When K = Q, E has a global minimal Weierstrass equation (e.g. E : y2 = x3 + 1 in
the example above). Therefore, there’s a canonical choice of ω which gives

CE =
∏
p

cE/Qp
·
∫
E(R)

|ω|.

Remark 1.5. Each local term CE/Kv
(ω) depends on the choice of ω, but CE doesn’t. To see this:

for α ∈ K×, CE/Kv
(αω) = |α|vCE/Kv

(ω) and
∏

v |α|v = 1.
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Where does this term come from? (From my understanding).
Recall that L(E, s) =

∏
v∤∞ L(E, q−s

v )−1. The non-Archimedean terms appearing in the Birch
and Swinnerton-Dyer conjecture arise naturally as v-adic integrals.

Lemma 1.6 (Tate, [5] Theorem 5.2). Given v ∤ ∞,

Lv(E, q−1
v )−1

∫
E(Kv)

|ω0|v = cE/Kv

∣∣∣ ω
ω0
v

∣∣∣
v
.

In the 1950’s, before the formulation of the Birch and Swinnerton-Dyer conjecture, the Tamagawa
number of a semisimple algebraic group was receiving a lot of attention. It is possible that Birch
and Swinnerton-Dyer tried to mimic this construction for elliptic curves as follows:∏

v

∫
E(Kv)

|ω|v
doesn’t converge

⇝
add convergence factors

∏
v∤∞

Lv(E, q−1
v )−1

∫
E(Kv)

|ω|v ·
∏
v|∞

∫
E(Kv)

|ω|v = CE .

It’s worth noting that when v ∤ 2∆E∞ (i.e. E/Kv has good reduction), Lemma 1.6 reduces to(
#Ẽ(kv)

qv

)−1 ∫
E(Kv)

|ω0|v =
∣∣∣ ω
ω0
v

∣∣∣
v

where the factors #Ẽ(kv)/qv were the quantities initially of interest to Birch and Swinnerton-Dyer.

2. Tamagawa numbers

Notation 2.1. • K a non-Archimedean local field, e.g. Qp

• OK ring of integers, e.g. Zp

• k residue field, e.g. Fp, of cardinality q

• A/K an abelian variety; C/K a smooth, proper, geometrically connected curve

The Birch and Swinnerton-Dyer conjecture can be stated more generally for abelian varieties (due
to Tate). The product of local terms has a natural generalisation, and at non-Archimedean places
the terms are computed from the ‘Néron model’ for A (see [4, Chapter IV, §5] for a definition) –
the correct analogue of a minimal regular model for an elliptic curve.

Definition 2.2. A Néron model of A is a smooth, separated, finite type group scheme A/OK with
generic fibre A, satisfying (the Néron mapping property):

if Y is a smooth, separated OK-scheme, then any K-morphism YK → A can be extended uniquely
to an OK-morphism Y → A.

Definition 2.3. Let A/OK denote a Néron model for A. Let ΦA := As/A0
s (the Néron component

group/the component group scheme of the special fibre of A). Then

cA/K := #ΦA(k) = #ΦA(k̄)
Gal(k̄/k).

Remark 2.4. (1). Néron models always exist.
(2). The Néron model of E/K is the smooth part of its minimal regular model and ΦE(k) ∼=

E(K)/E0(K) (Néron, see [4]). We therefore recover the previous definition of the Tamagawa number,
i.e. cE/K = [E(K) : E0(K)].

For higher dimensional A, it is infeasible to compute defining equations in projective space and
so the computation of a Néron model is out of scope.
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If A = JacC, it turns out that the Néron model can be described in terms of the minimal regular
model of C (a theorem of Raynaud, [3, Theorem 9.5.4]). This allows us to compute the Tamagawa
number for such an A as follows.

Theorem 2.5 ([2] Theorem 1.1). Let C/OK be a minimal regular model for C. Write I =

{Γ1, . . . ,Γn} for the irreducible components of Cs base-changed to k̄ and mi ∈ N for the multiplicity
of Γi. Define (extending linearly)

α : ZI −→ ZI

Γi 7−→
∑

1≤j≤n(Γi · Γj)Γj

β : ZI −→ Z

Γi 7−→ mi.

Then ΦJacC(k̄) ∼= ker(β)/im(α). In particular,

cJacC/K = #ker(β)/im(α)Gal(k̄/k).

Example 2.6. (Elliptic curve type I2) Let E : y2 = x3 + 2x2 + p2 over Qp for p odd. This is a
minimal Weierstrass equation for E whose reduction is a nodal cubic curve. Blowing up once here
yields the minimal regular model:

blow up at (0, 0)
⇝

Γ1

Γ2

Let C have such a minimal regular model. Write I = {Γ1,Γ2}, m1 = m2 = 1 and (Γ1 · Γ2) =

(Γ2 · Γ1) = 2 and (Γ1 · Γ1) = (Γ1 · Γ2) = −2. Then ker(β) = ⟨Γ2 − Γ1⟩Z and im(α) = ⟨2(Γ2 − Γ1)⟩Z
(since α(Γ1) = 2(Γ2 − Γ1) = −α(Γ2). Therefore,

ΦJacC(k̄) ∼= Z/2Z = {0,Γ2 − Γ1}.

• If Gal(k̄/k) acts trivially (for E this corresponds to
(
2
p

)
= +1), then cJacC/K = 2.

• If Gal(k̄/k) acts non-trivially, (for E this corresponds to
(
2
p

)
= −1), then cJacC/K = 2 too.

Example 2.7. Let n ≥ 3. Let C have the given minimal regular model (e.g. an elliptic curve of
type In).

Γ1

Γ2

Γn

Here I = {Γ1, . . . ,Γn}. ∀i, we have mi = 1. Then

ker(β) = ⟨Γ1 − Γ2, . . . , Γn−1 − Γn⟩Z
= ⟨Γ1 − 2Γ2 + Γ3, . . . , Γn−2 − 2Γn−1 + Γn, Γn−1 − Γn⟩Z

Write M for the intersection pairing matrix. Then α : a = (a1, . . . , an) → a ·M.

M has n− 1 linearly independent columns and we can
show that im(α) is

⟨Γ1−2Γ2+Γ3, . . . , Γn−2−2Γn−1+Γn, n(Γn−1−Γn)⟩Z.

Therefore ΦJacC(k̄) ∼= Z/nZ.
• If Gal(k̄/k) acts trivially, then cJacC/K = n.
• If Gal(k̄/k) acts non-trivially, then when n is

odd ⇒ cJacC/K = 1 and when n is even ⇒
cJacC/K = 2.

M =



−2 1 0 · · · 0 1

1 −2 1
. . . . . . 0

0 1 −2
. . . . . .

...
...

. . . . . . . . . 1 0

0
. . . . . . 1 −2 1

1 0 · · · 0 1 −2


.
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Example 2.8. (Elliptic curve type I∗n)

Let n = 0, i.e. potential good reduction: acquires good reduction over a field extension.

Here I = {Γ1,Γ2,Γ3,Γ4,Γ5}. ∀i ̸= 3 we have mi = 1 and m3 = 2. Clearly,

ker(β) = ⟨
λ1

Γ1 − Γ2,
λ2

Γ2 − Γ4,
λ3

Γ4 − Γ5,
λ4

Γ3 − 2Γ1⟩Z = ⟨λ1, λ2, λ1 + λ3, λ4⟩Z.

The intersection pairing matrix is

M =


−2 0 1 0 0

0 −2 1 0 0

1 1 −2 1 1

0 0 1 −2 0

0 0 1 0 −2


which has 4 linearly independent columns. We can show that im(α) is

⟨λ4, 2λ1+λ4,−3λ1−2λ2−λ3−2λ4, 2λ1+2λ2+λ4⟩Z = ⟨λ4, 2λ1, λ1+λ3, 2λ2⟩Z.

Therefore Φ(k̄) ∼= (Z/2Z)2.

Let n ≥ 1, i.e. potential multiplicative reduction: acquires multiplicative reduction over a field
extension.

A similar computation gives that

Φ(k̄) ∼=

{
Z/4Z n odd,
(Z/2Z)2 n even.
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