MODELS OF CURVES: THE BIRCH AND SWINNERTON-DYER FORMULA

HOLLY GREEN

1. THE STATEMENT

Notation 1.1. o K a number field of discriminant Ag
e E/K an elliptic curve
e | - |, the normalised absolute value on K, (for v a place of K)
e ¢, the cardinality of the residue field of K,

Conjecture 1 (Birch and Swinnerton-Dyer part II). Assuming g is finite and that L(E,s) has
an analytic continuation to C, its lead coefficient at s =1 is
#Ulp - Regp - Cp

#E(K)gors TV ’AK‘

Todays focus is the product of local terms Cg, which is model dependent.

Definition 1.2. Fix an non-zero differential w on E. Then

Cg = HCE/KU o vll_olo /E(Kv) |lwly - vll_oIo /E(Kv) lwA®| = IZICE/KU(W)
K,=C
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K,=R
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where cp/k, = [E(K,) : Eo(Ky)] is a Tamagawa number and w) is a Néron differential.

If B:y? 4 ajxy + asy = 2% + agx® + a4z + ag is a minimal Weierstrass equation over K, then

0 dr
w, =f————.
2y +ai1r + as

(2

Example 1.3. Let F/Q : y? = 23 + 172, Ap = —23 .33 . 17?4, This is minimal over Qp, and so
wg = :I:% whenever p # 17.
Let y = 17%Y, = 17*X. Then E : Y? = X3 4 1 is minimal over Q;7 and

dx d
R 11725.

Remark 1.4. When K = Q, E has a global minimal Weierstrass equation (e.g. F:y?> =23+ 1 in
the example above). Therefore, there’s a canonical choice of w which gives

Ce=||cE / |w].
Mo [,
Remark 1.5. Each local term Cg/, (w) depends on the choice of w, but C'r doesn’t. To see this:

for a € K*, O/, (aw) = |al,Cg/k, (W) and ], laf, = 1.
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Where does this term come from? (From my understanding).
Recall that L(E,s) = [],.c L(E, ¢, *)~!. The non-Archimedean terms appearing in the Birch
and Swinnerton-Dyer conjecture arise naturally as v-adic integrals.

Lemma 1.6 (Tate, [5] Theorem 5.2). Given v { oo,

Ly(B,q,")" / WOy = cp/,
E(Ky)

il
wg v
In the 1950’s, before the formulation of the Birch and Swinnerton-Dyer conjecture, the Tamagawa

number of a semisimple algebraic group was receiving a lot of attention. It is possible that Birch
and Swinnerton-Dyer tried to mimic this construction for elliptic curves as follows:

doesn’t | converge _1
I/, e Tza [ el L[ el =Ce
o JE(K,) add convergence factors E(K,)

v]oo

It’s worth noting that when v { 2Agoo (i.e. E/K, has good reduction), Lemma 1.6 reduces to

~ -1
SR

where the factors #F (ky)/q, were the quantities initially of interest to Birch and Swinnerton-Dyer.

2. TAMAGAWA NUMBERS

Notation 2.1. e K a non-Archimedean local field, e.g. Q,
e Ok ring of integers, e.g. Z,
o k residue field, e.g. F),, of cardinality ¢
e A/K an abelian variety; C'/KC a smooth, proper, geometrically connected curve

The Birch and Swinnerton-Dyer conjecture can be stated more generally for abelian varieties (due
to Tate). The product of local terms has a natural generalisation, and at non-Archimedean places
the terms are computed from the ‘Néron model’ for A (see |4, Chapter IV, §5] for a definition) —
the correct analogue of a minimal regular model for an elliptic curve.

Definition 2.2. A Néron model of A is a smooth, separated, finite type group scheme A/Ox with
generic fibre A, satisfying (the Néron mapping property):
if YV is a smooth, separated Ox-scheme, then any KC-morphism Yx — A can be extended uniquely
to an Ox-morphism Y — A.

Definition 2.3. Let A/Ox denote a Néron model for A. Let ®4 := A,/.A? (the Néron component
group/the component group scheme of the special fibre of A). Then

caj = #Pa(k) = #® 4 (F)CIER),

Remark 2.4. (1). Néron models always exist.

(2). The Néron model of E/K is the smooth part of its minimal regular model and ®g(k) =
E(K)/Eo(K) (Néron, see [4]). We therefore recover the previous definition of the Tamagawa number,
i.e. CE/}C = [E(]C) : E()(IC)]

For higher dimensional A, it is infeasible to compute defining equations in projective space and
so the computation of a Néron model is out of scope.
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If A = JacC, it turns out that the Néron model can be described in terms of the minimal regular
model of C' (a theorem of Raynaud, |3, Theorem 9.5.4|). This allows us to compute the Tamagawa
number for such an A as follows.

Theorem 2.5 ([2] Theorem 1.1). Let C/Ox be a minimal regular model for C. Write I =
{Ty,..., Ty} for the irreducible components of Cs base-changed to k and m; € N for the multiplicity
of T';. Define (extending linearly)
a: 78— 7! B: 72 —7
Pi — ZISan(Fi . l“j)l“j Fi — m,;.

Then @jacc(k) = ker(5) /im(«). In particular,

ClacC/K = #ker(ﬁ)/im(a)Gal(é/k)'

Example 2.6. (Elliptic curve type I5) Let E : y? = a3 + 22% + p? over Q, for p odd. This is a
minimal Weierstrass equation for £ whose reduction is a nodal cubic curve. Blowing up once here
yields the minimal regular model:

blow up at (0, 0) Iy
USY

>< =<

Iy

Let C have such a minimal regular model. Write I = {I";,T's}, m; = mg = 1 and (I'; - I'y) =
(FQ : Fl) =2 and (Fl . Fl) = (Fl . FQ) = —2. Then ker(/B) = <F2 — Fl>Z and im(a) = <2(F2 — Fl)>Z
(since a(T'y) = 2(I'e — I'1) = —(T"2). Therefore,

q)JaCC(k) = Z/2Z = {O,FQ — Fl}
e If Gal(k/k) acts trivially (for E this corresponds to (%) = +1), then cjacc/x = 2.
e If Gal(k/k) acts non-trivially, (for E this corresponds to <%) = —1), then cjacc/x = 2 too.

Example 2.7. Let n > 3. Let C have the given minimal regular model (e.g. an elliptic curve of
type Ip,).

I, . HereI= {I'y,...,Tx}. Vi, we have m; = 1. Then
) ker(8) = (U1 — T, ..., Ty — T)z
r, — [y — 2Ty + T, ..., Tpg— 20 + Ty, Ty — Tz
L, Write M for the intersection pairing matrix. Then « : a = (aq,...,a,) — a- M.

M has n — 1 linearly independent columns and we can

show that im(«) is -2 1 0 -~ 0 1
<F1*2F2+F3, vy Do =210, 1 +T7,, n(Fn,l—Fn))Z. 1 -2 1 . .0
Therefore ®j..c (k) = Z/nZ. M= o 1 =2 :
o If Gal(k/k) acts trivially, then cja.c/c = n. T

e If Gal(k/k) acts non-trivially, then when n is . . 5 1
odd = cjaco/x = 1 and when n is even = . O. _1 )

ClacC/K = 2. - -
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Example 2.8. (Elliptic curve type I})

Let n =0, i.e. potential good reduction: acquires good reduction over a field extension.

Here I = {I'1,T'5,1'3,T'4,'5}. Vi # 3 we have m; = 1 and mg3 = 2. Clearly,

1

N

1\\ A The intersection pairing matrix is

[

NG 2 0 1 0 0]
N 0 -2 1 0 O
M=|1 1 -2 1 1
r 0 0 1 -2 0
A - 0 0 1 0 -2
?/ ‘ which has 4 linearly independent columns. We can show that im(«) is
1 <)\4, 2A1+ Ay, =301 — 2 0 — A3 — 224,201 + 20 + )\4)2 = (/\4, 2A1, A1+ Ag, 2)\2>Z~

Therefore ®(k) = (Z/27).

Al A2 A3 Ag
ker(f) = (I't = T'9,I'y =Ty, Ty — I'5, T3 — 2I'1)7z = (A1, A2, A1 + A3, Az

Let n > 1, i.e. potential multiplicative reduction: acquires multiplicative reduction over a field

extension.
1
1
2
D) A similar computation gives that
. _ Z/AZ  n odd,
2,° ®(k) = )
(Z/27)° n even.
2
1
1
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